
pwspy Documentation
Release 0.2.14

Nick Anthony

Jan 03, 2022

CONTENTS

1 Usage 3

2 API 5
2.1 pwspy.analysis . 5
2.2 pwspy.dataTypes . 18
2.3 pwspy.utility . 55

3 Examples 83
3.1 Examples . 83

4 Indices and tables 95

Python Module Index 97

Index 99

i

ii

pwspy Documentation, Release 0.2.14

PWSpy is a Python library for working with Partial Wave Spectroscopic Microscopy data. It provides a concise and
simple interface for loading and analyzing experimental data. Support for modern as well as legacy file formats of PWS
data is provided.

With PWSpy, it is trivial to skip to skip the basics and get to the heart of extracting meaningful results from your
experimental data. Basic operations such as normalization, hardware compensation, and calibration are handled with
the call of a single method. Additionally, the library provides a means for conveniently loading and storing auxiliary
data such as ROIs, notes, and analysis outputs.

Utility functionality for generating visualizations, automatic colocalization, calculation of thin-film reflectance based
on fresnel equations, parsing metadata from the graph-based acquisition engine, and more are provided in the utility
subpackage.

CONTENTS 1

pwspy Documentation, Release 0.2.14

2 CONTENTS

CHAPTER

ONE

USAGE

Almost any usage of PWSpy will start with loading of experimental data. The simplest way to do this is with the pwspy.
dataTypes.Acquisition class. An instance of Acquisition provides properties (pws, dynamics, fluorescence) which
provide references to colocalized measurements which may be part of a single acquisition.

import pwspy.dataTypes as pwsdt

acq = pwsdt.Acquisition(pathToData)

pwsMetadata = acq.pws

if acq.dynamics is not None:
dynamicsMetadata = acq.dynamics

if acq.fluorescence is not None:
listOfFluorMetadata = acq.fluorescence

An acquisition also provides access to information that applies to all measurements such as ROIs and automated imaging
metadata.

roiInfos: List[Tuple[str, int, Roi.FileFormat]] = acq.getRois()
for roiInfo in roiInfos:

roiFile = acq.loadRoi(*roiInfo)

Each sub-measurement metadata object of an Acquisition provides access to information specific to that measurement
such as analysis results and raw data.

from pwspy.analysis.pws import PWSAnalysisResults
from pwspy.analysis.dynamics import DynAnalysisResults

listOfAnalysisNames = acq.pws.getAnalyses()
analysisName = listOfAnalysisNames[0]

pAnalysisResults: PWSAnalysisResults = acq.pws.loadAnalysis(analysisName)
dAnalysisResults: DynAnalysisResults = acq.dynamics.loadAnalysis(analysisName)
roi: pwsdt.Roi = acq.loadRoi(roiName, roiNumber).getRoi()

print(f"Average nuclear Sigma is: {pAnalysisResults.rms[roi.mask].mean()}")
print(f"Average nuclear Sigma_t^2 is: {dAnalysisResults.rms_t_squared[roi.mask].mean()}")

There is much more functionality in this library, please see the examples and API documentation.

3

pwspy Documentation, Release 0.2.14

4 Chapter 1. Usage

CHAPTER

TWO

API

analysis Contains all code used for the analysis of data acquired
with the PWS system.

dataTypes Custom datatypes that are commonly used in the analysis
of PWS related data.

utility Useful subpackages ranging many different topics

2.1 pwspy.analysis

Contains all code used for the analysis of data acquired with the PWS system.

2.1.1 Submodules

compilation Classes used during the "compilation" step of analysis.
pws Classes used in the analysis of PWS data.
warnings Functions which check data during analysis for abnor-

mality.
dynamics Classes used in the analysis of Dynamics data.

pwspy.analysis.compilation

Classes used during the “compilation” step of analysis. This is when the data saved during analysis is combined with
ROIs to generate a table of values such as the average RMS, reflectance, diffusion coefficient, etc.

PWS

PWSCompilerSettings([reflectance, rms, ...]) These settings determine which values should be pro-
cessed during compilation

PWSRoiCompilationResults(cellIdTag, ...)

PWSRoiCompiler(settings)

5

pwspy Documentation, Release 0.2.14

pwspy.analysis.compilation.PWSCompilerSettings

class pwspy.analysis.compilation.PWSCompilerSettings(reflectance=False, rms=False,
polynomialRms=False,
autoCorrelationSlope=False, rSquared=False,
ld=False, opd=False, meanSigmaRatio=False)

Bases: pwspy.analysis.compilation._abstract.AbstractCompilerSettings

These settings determine which values should be processed during compilation

pwspy.analysis.compilation.PWSRoiCompilationResults

class pwspy.analysis.compilation.PWSRoiCompilationResults(cellIdTag, analysisName, reflectance,
rms, polynomialRms,
autoCorrelationSlope, rSquared, ld, opd,
opdIndex, varRatio)

Bases: pwspy.analysis.compilation._abstract.AbstractRoiCompilationResults

pwspy.analysis.compilation.PWSRoiCompiler

class pwspy.analysis.compilation.PWSRoiCompiler(settings)
Bases: pwspy.analysis.compilation._abstract.AbstractRoiCompiler

run(results, roi)
Combine information from analysis results and an ROI to produce values averaged over the ROI.

Parameters

• results (PWSAnalysisResults) – The analysis results to compile.

• roi (Roi) – The ROI to be used to segment out a section of the results.

Return type t_.Tuple[PWSRoiCompilationResults, t_.List[warnings.AnalysisWarning]]

Dynamics

DynamicsCompilerSettings([meanReflectance, ...]) These settings determine how a Dynamics acquisition
should be compiled.

DynamicsRoiCompilationResults(cellIdTag, ...)

DynamicsRoiCompiler(settings)

6 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.analysis.compilation.DynamicsCompilerSettings

class pwspy.analysis.compilation.DynamicsCompilerSettings(meanReflectance=False,
rms_t_squared=False, diffusion=False)

Bases: pwspy.analysis.compilation._abstract.AbstractCompilerSettings

These settings determine how a Dynamics acquisition should be compiled.

pwspy.analysis.compilation.DynamicsRoiCompilationResults

class pwspy.analysis.compilation.DynamicsRoiCompilationResults(cellIdTag, analysisName,
reflectance, rms_t_squared,
diffusion)

Bases: pwspy.analysis.compilation._abstract.AbstractRoiCompilationResults

pwspy.analysis.compilation.DynamicsRoiCompiler

class pwspy.analysis.compilation.DynamicsRoiCompiler(settings)
Bases: pwspy.analysis.compilation._abstract.AbstractRoiCompiler

run(results, roi)
Combine information from analysis results and an ROI to produce values averaged over the ROI.

Parameters

• results (DynamicsAnalysisResults) – The analysis results to compile.

• roi (Roi) – The ROI to be used to segment out a section of the results.

Return type Tuple[DynamicsRoiCompilationResults, List[AnalysisWarning]]

Generic

GenericCompilerSettings([roiArea]) These settings determine which values should be pro-
cessed during compilation

GenericRoiCompilationResults(roiFile, roiArea) Results for compilation that don't pertain to any specific
analysis.

GenericRoiCompiler(settings)

pwspy.analysis.compilation.GenericCompilerSettings

class pwspy.analysis.compilation.GenericCompilerSettings(roiArea=False)
Bases: pwspy.analysis.compilation._abstract.AbstractCompilerSettings

These settings determine which values should be processed during compilation

2.1. pwspy.analysis 7

pwspy Documentation, Release 0.2.14

pwspy.analysis.compilation.GenericRoiCompilationResults

class pwspy.analysis.compilation.GenericRoiCompilationResults(roiFile, roiArea)
Bases: pwspy.analysis.compilation._abstract.AbstractRoiCompilationResults

Results for compilation that don’t pertain to any specific analysis.

pwspy.analysis.compilation.GenericRoiCompiler

class pwspy.analysis.compilation.GenericRoiCompiler(settings)
Bases: object

pwspy.analysis.pws

Classes used in the analysis of PWS data.

Classes

PWSAnalysisSettings(filterOrder, ...) These settings determine the behavior of the PWSAnal-
ysis class.

PWSAnalysisResults([file, variablesDict, ...]) A representation of analysis results.
PWSAnalysis(settings, extraReflectance, ref) The standard PWS analysis routine.

pwspy.analysis.pws.PWSAnalysisSettings

class pwspy.analysis.pws.PWSAnalysisSettings(filterOrder, filterCutoff, polynomialOrder,
extraReflectanceId, referenceMaterial, wavelengthStart,
wavelengthStop, skipAdvanced, autoCorrStopIndex,
autoCorrMinSub, numericalAperture, relativeUnits,
cameraCorrection, waveNumberCutoff)

Bases: pwspy.analysis._abstract.AbstractAnalysisSettings

These settings determine the behavior of the PWSAnalysis class.

filterOrder
The order of the buttersworth filter used for lowpass filtering.

Type int

filterCutoff
The cutoff frequency of the buttersworth filter used for lowpass filtering. Frequency unit is 1/wavelength .
Set to None to skip lowpass filtering.

Type float

polynomialOrder
The order of the polynomial which will be fit to the reflectance and then subtracted before calculating the
analysis results.

Type int

extraReflectanceId
The idtag of the extra reflection used for correction. Set to None if extra reflectance calibration is being

8 Chapter 2. API

pwspy Documentation, Release 0.2.14

skipped.

Type str

referenceMaterial
The material that was being imaged in the reference acquisition

Type Material

wavelengthStart
The acquisition spectra will be truncated at this wavelength before analysis. Set to None to bypass this step

Type int

wavelengthStop
The acquisition spectra will be truncated after this wavelength before analysis. Set to None to bypass this
step

Type int

skipAdvanced
If True then skip analysis of the OPD and autocorrelation.

Type bool

autoCorrStopIndex
The autocorrelation slope will be calculated up to this number of elements. More elements is theoretically
better but it severely limited by SNR.

Type int

autoCorrMinSub
If True then subtract the minimum of the ACF from ACF. This prevents numerical issues but doesn’t actually
make any sense.

Type bool

numericalAperture
The numerical aperture that the acquisition was imaged at.

Type float

relativeUnits
relativeUnits: If True then all calculation are performed such that the reflectance is 1 if it matches the
reference. If False then we use the theoretical reflectance of the reference (based on NA and reference
material) to normalize our results to the actual physical reflectance of the sample (about 0.4% for water)

Type bool

cameraCorrection
An object describing the dark counts and non-linearity of the camera used. If the data supplied to the
PWSAnalysis class has already been corrected then this setting will not be used. Setting this to None will
result in the camera correcting being automatically determined based on the image files’ metadata.

Type Optional[pwspy.dataTypes._other.CameraCorrection]

waveNumberCutoff
A cutoff frequency for filtering the signal after converting from wavelength to wavenumber. In units of
microns (opd). Note: To convert from depth to opd divide by 2 (because the light makes a round trip) and
divide by the RI of the media (nucleus)

Type float

asDict()

2.1. pwspy.analysis 9

pwspy Documentation, Release 0.2.14

Return type dict

Returns A dictionary with setting names as the keys and the values of the settings as the values.

classmethod fromJson(filePath, name)
Create a new instance of this class from a json text file.

Parameters

• filePath (str) – The path to the folder containing the JSON file to be loaded.

• name (str) – The name that the analysis was saved as.

Return type AbstractAnalysisSettings

Returns A new instance of an analysis settings class.

classmethod fromJsonString(string)
Use _fromDict to load a new instance of the cls from a json string.

Parameters string (str) – A JSON formatted string to load the object from.

Return type AbstractAnalysisSettings

Returns A new instance of analysis settings class.

toJson(filePath, name)
Save this object to a json text file.

Parameters

• filePath (str) – The path to the folder to contain the new JSON file.

• name (str) – The name to save the analysis as.

toJsonString()
Use _asDict to convert an instance of this class to a json string.

Return type str

Returns A JSON formatted string.

pwspy.analysis.pws.PWSAnalysisResults

class pwspy.analysis.pws.PWSAnalysisResults(file=None, variablesDict=None, analysisName=None)
Bases: pwspy.analysis._abstract.AbstractHDFAnalysisResults

A representation of analysis results. Items are loaded from disk using lazy-loading strategy and are then cached
in memory.

static FieldDecorator(func)
Decorate functions in subclasses that access their fields from the HDF file with this decorator. It will: 1:
Make it so the data is load from disk on the first access and stored in memory for every further access. 2:
Report an understandable error if the field isn’t found in the HDF file. 3: Make the accessors work even if
the the object isn’t associated with an HDF file.

classmethod create(settings, reflectance, meanReflectance, rms, polynomialRms, autoCorrelationSlope,
rSquared, ld, imCubeIdTag, referenceIdTag, extraReflectionTag)

Used to create results from existing variables. These results can then be saved to file.

Returns A new instance of analysis results.

static fields()

10 Chapter 2. API

pwspy Documentation, Release 0.2.14

Returns A sequence of string names of the datafields that the analysis results contains.

static fileName2Name(fileName)

Parameters fileName (str) – The filename that the HDF file was saved as.

Return type str

Returns The analysis name.

classmethod load(directory, name)
Load an analyis results object from an HDF5 file located in directory.

Parameters

• directory (str) – The path to the folder containing the file.

• name (str) – The name of the analysis.

Return type AbstractHDFAnalysisResults

Returns A new instance of analysis results loaded from file.

static name2FileName(name)

Parameters name (str) – An analysis name.

Return type str

Returns The corresponding file name for the hdf5 file.

releaseMemory()
The cached properties continue to stay in RAM until they are deleted, this method deletes all cached data
to release the memory.

toHDF(directory, name, overwrite=False, compression=None)
Save the AnalysisResults object to an HDF file in directory. The name of the file will be determined by
name. If you want to know what the full file name will be you can use this class’s name2FileName method.

Parameters

• directory (str) – The path to the folder to save the file in.

• name (str) – The name of the analysis. This determines the file name.

• overwrite (bool) – If True then any existing file of the same name will be replaced.

• compression (Optional[str]) – The value of this argument will be passed to
h5py.create_dataset for numpy arrays. See h5py documentation for available options.

autoCorrelationSlope
A 2D array giving the slope of the ACF of the spectra at each position in the image.

extraReflectionTag
The idtag of the extra reflectance correction used.

imCubeIdTag
The idtag of the acquisition that was analyzed.

ld
A 2D array giving Ld. A parameter derived from RMS and the ACF slope.

meanReflectance
A 2D array giving the reflectance of the image averaged over the full spectra.

2.1. pwspy.analysis 11

pwspy Documentation, Release 0.2.14

moduleVersion
The version of PWSpy code that this file was saved with.

opd
The 3D array of values, opdIndex: The sequence of OPD values associated with each 2D slice along the
3rd axis of the opd data.

Type A tuple containing

Type opd

polynomialRms
A 2D array giving the variance of the polynomial fit that was subtracted from the reflectance before calcu-
lating RMS.

rSquared
A 2D array giving the r^2 coefficient of determination for the linear fit to the logarithm of the ACF. This
basically tells us how confident to be in the autoCorrelationSlope.

referenceIdTag
The idtag of the acquisition that was used as a reference for normalization.

reflectance
The KCube containing the 3D reflectance data after all corrections and analysis.

rms
A 2D array giving the spectral variance at each posiiton in the image.

settings
The settings used for the analysis

time
The time that the analysis was performed.

pwspy.analysis.pws.PWSAnalysis

class pwspy.analysis.pws.PWSAnalysis(settings, extraReflectance, ref)
Bases: pwspy.analysis._abstract.AbstractAnalysis

The standard PWS analysis routine. Initialize and then run for as many different PwsCubes as you want. For a
given set of settings and reference you only need to instantiate one instance of this class. You can then perform
run on as many data cubes as you want.

Parameters

• settings (PWSAnalysisSettings) – The settings used for the analysis

• extraReflectance (Union[ERMetaData, ExtraReflectanceCube,
ExtraReflectionCube, None]) – An object used to correct for stray reflectance
present in the imaging system. This can be of type: None: No correction will be performed.
ERMetaData (Recommended): The metadata object referring to a calibration file for extra
reflectance. It will be processed in conjunction with the reference immage to produce
an ExtraReflectionCube representing the stray reflectance in units of camera counts/ms.
ExtraReflectanceCube: Effectively identical to supplying an ERMataData object. ExtraR-
eflectionCube: An object representing the stray reflection in units of counts/ms. It is up to
the user to make sure that the data is scaled appropriately to match the data being analyzed.

• ref (PwsCube) – The reference acquisition used for analysis.

12 Chapter 2. API

pwspy Documentation, Release 0.2.14

copySharedDataToSharedMemory()
When running the run method in parallel memory for the object used must be copied to each new process.
We can avoid that and save a lot of Ram by moving data that is shared between processes to shared memory.
If you don’t want to implement this then just override it and raise NotImplementedError

run(cube)
Given an data cube to analyze this function returns an instanse of AnalysisResults. In the PWSAnalysisApp
this function is run in parallel by the AnalysisManager.

Parameters cube (PwsCube) – A data cube to be analyzed using the settings provided in the
constructor of this class.

Return type Tuple[PWSAnalysisResults, List[AnalysisWarning]]

Returns A new instance of analysis results.

Inheritance

ABC

AbstractAnalysis

AbstractAnalysisResults

AbstractAnalysisSettings

PWSAnalysis

AbstractHDFAnalysisResults

PWSAnalysisSettings

PWSAnalysisResults

pwspy.analysis.warnings

Functions which check data during analysis for abnormality. If abnormal conditions are found then an AnalysisWarning
is produced. The application can then display or record these warnings. This aspect of the program has not really been
fully implemented.

pwspy.analysis.dynamics

Classes used in the analysis of Dynamics data.

Classes

DynamicsAnalysisSettings(extraReflectanceId, ...) These settings determine the behavior of the Dynamics-
Analysis class.

DynamicsAnalysisResults([file, ...])

DynamicsAnalysis(settings, extraReflectance, ref) This class performs the analysis of RMS_t_squared and
D (diffusion).

2.1. pwspy.analysis 13

pwspy Documentation, Release 0.2.14

pwspy.analysis.dynamics.DynamicsAnalysisSettings

class pwspy.analysis.dynamics.DynamicsAnalysisSettings(extraReflectanceId, referenceMaterial,
numericalAperture, relativeUnits,
cameraCorrection,
diffusionRegressionLength=3)

Bases: pwspy.analysis._abstract.AbstractAnalysisSettings

These settings determine the behavior of the DynamicsAnalysis class.

Parameters

• extraReflectanceId (Optional[str]) – The unique IDTag of the extraReflectance cali-
bration that was used on this analysis.

• referenceMaterial (Material) – The material that was imaged in the reference image
of this analysis. Found as an in pwspy.moduleConst.Material. The theoretically predicted
reflectance of the reference image is used in the extraReflectance correction.

• numericalAperture (float) – The illumination NA of the system. This is used for two
purposes. First, we want to make sure that the NA of our data matches the NA of our extra
reflectance correction cube. Second, the theoretically predicted reflectance of our reference
is based not only on what our refereMaterial is but also the NA since reflectance is angle
dependent.

• relativeUnits (bool) – If True then all calculation are performed such that the reflectance
is 1 if it matches the reference. If False then we use the theoretical reflectance of the ref-
erence (based on NA and reference material) to normalize our results to the actual physical
reflectance of the sample (about 0.4% for water)

• cameraCorrection (Optional[CameraCorrection]) – An object describing the dark
counts and non-linearity of the camera used. If the data supplied to the DynamicsAnaly-
sis class has already been corrected then this setting will not be used. Setting this to None
will result in the camera correcting being automatically determined based on the image files’
metadata.

• diffusionRegressionLength (int) – The original matlab scripts for analysis of dynam-
ics data determined the slope of the log(ACF) by looking only at the first two indices,
(log(ACF)[1]-log(ACF)[0])/dt. This results in very noisy results. However as you at higher
index value of the log(ACF) the noise becomes much worse. A middle ground is to perform
linear regression on the first 4 indices to determine the slope. You can adjust that number
here.

asDict()

Return type dict

Returns A dictionary with setting names as the keys and the values of the settings as the values.

classmethod fromJson(filePath, name)
Create a new instance of this class from a json text file.

Parameters

• filePath (str) – The path to the folder containing the JSON file to be loaded.

• name (str) – The name that the analysis was saved as.

Return type AbstractAnalysisSettings

Returns A new instance of an analysis settings class.

14 Chapter 2. API

pwspy Documentation, Release 0.2.14

classmethod fromJsonString(string)
Use _fromDict to load a new instance of the cls from a json string.

Parameters string (str) – A JSON formatted string to load the object from.

Return type AbstractAnalysisSettings

Returns A new instance of analysis settings class.

toJson(filePath, name)
Save this object to a json text file.

Parameters

• filePath (str) – The path to the folder to contain the new JSON file.

• name (str) – The name to save the analysis as.

toJsonString()
Use _asDict to convert an instance of this class to a json string.

Return type str

Returns A JSON formatted string.

pwspy.analysis.dynamics.DynamicsAnalysisResults

class pwspy.analysis.dynamics.DynamicsAnalysisResults(file=None, variablesDict=None,
analysisName=None)

Bases: pwspy.analysis._abstract.AbstractHDFAnalysisResults

static FieldDecorator(func)
Decorate functions in subclasses that access their fields from the HDF file with this decorator. It will: 1:
Make it so the data is load from disk on the first access and stored in memory for every further access. 2:
Report an understandable error if the field isn’t found in the HDF file. 3: Make the accessors work even if
the the object isn’t associated with an HDF file.

classmethod create(settings, meanReflectance, rms_t_squared, reflectance, diffusion, imCubeIdTag,
referenceIdTag, extraReflectionIdTag)

Used to create results from existing variables. These results can then be saved to file.

Returns A new instance of analysis results.

static fields()

Returns A sequence of string names of the datafields that the analysis results contains.

static fileName2Name(fileName)

Parameters fileName (str) – The filename that the HDF file was saved as.

Return type str

Returns The analysis name.

classmethod load(directory, name)
Load an analyis results object from an HDF5 file located in directory.

Parameters

• directory (str) – The path to the folder containing the file.

2.1. pwspy.analysis 15

pwspy Documentation, Release 0.2.14

• name (str) – The name of the analysis.

Return type AbstractHDFAnalysisResults

Returns A new instance of analysis results loaded from file.

static name2FileName(name)

Parameters name (str) – An analysis name.

Return type str

Returns The corresponding file name for the hdf5 file.

toHDF(directory, name, overwrite=False, compression=None)
Save the AnalysisResults object to an HDF file in directory. The name of the file will be determined by
name. If you want to know what the full file name will be you can use this class’s name2FileName method.

Parameters

• directory (str) – The path to the folder to save the file in.

• name (str) – The name of the analysis. This determines the file name.

• overwrite (bool) – If True then any existing file of the same name will be replaced.

• compression (Optional[str]) – The value of this argument will be passed to
h5py.create_dataset for numpy arrays. See h5py documentation for available options.

diffusion
A 2D array indicating the diffusion at each position in the image.

extraReflectionIdTag
The idtag of the extra reflection correction that was used.

imCubeIdTag
The idtag of the dynamics cube that was analyzed.

meanReflectance
A 2D array giving the reflectance of the image averaged over the full spectra.

moduleVersion
The version of PWSpy code that this file was saved with.

referenceIdTag
The idtag of the dynamics cube that was used as a reference for normalization.

reflectance
A dynamics cube containing the 3D reflectance array after all corrections and analysis.

rms_t_squared
A 2D array giving the spectral variance at each position in the image.

settings
The settings used to generate these results.

time
The time that the analysis was performed.

16 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.analysis.dynamics.DynamicsAnalysis

class pwspy.analysis.dynamics.DynamicsAnalysis(settings, extraReflectance, ref)
Bases: pwspy.analysis._abstract.AbstractAnalysis

This class performs the analysis of RMS_t_squared and D (diffusion). It is based on a set of MATLAB scripts
written by Scott Gladstein. The original scripts can be found in the _oldMatlab subpackage.

References

“Multimodal interferometric imaging of nanoscale structure and macromolecular motion uncovers UV induced
cellular paroxysm”

Parameters

• settings (DynamicsAnalysisSettings) – The settings use for the analysis

• extraReflectance (Union[ERMetaData, ExtraReflectanceCube, None]) – the meta-
data object referring to a calibration file for extra reflectance. You can optionally proide the
ExtraReflectanceCube rather than just the metadata object referring to it.

• ref (DynCube) – A reference acquisition to use for normalization.

copySharedDataToSharedMemory()
When running the run method in parallel memory for the object used must be copied to each new process.
We can avoid that and save a lot of Ram by moving data that is shared between processes to shared memory.
If you don’t want to implement this then just override it and raise NotImplementedError

run(cube)
Given an data cube to analyze this function returns an instanse of AnalysisResults. In the PWSAnalysisApp
this function is run in parallel by the AnalysisManager.

Parameters cube (DynCube) – A data cube to be analyzed using the settings provided in the
constructor of this class.

Return type Tuple[DynamicsAnalysisResults, List[AnalysisWarning]]

Returns A new instance of analysis results.

Inheritance

ABC

AbstractAnalysis

AbstractAnalysisResults

AbstractAnalysisSettings

DynamicsAnalysis

AbstractHDFAnalysisResults

DynamicsAnalysisSettings

DynamicsAnalysisResults

2.1. pwspy.analysis 17

pwspy Documentation, Release 0.2.14

2.1.2 Inheritance

ABC

AbstractAnalysis

AbstractAnalysisResults

AbstractAnalysisSettings

DynamicsAnalysis

PWSAnalysis

AbstractHDFAnalysisResults

DynamicsAnalysisSettings

PWSAnalysisSettings

DynamicsAnalysisResults

PWSAnalysisResults

2.2 pwspy.dataTypes

Custom datatypes that are commonly used in the analysis of PWS related data.

2.2.1 Metadata Classes

These classes provide handling of information about an acquisition without requiring that the full data be loaded into
RAM. These can be used to get information about the equipment used, the date the acquisition was taken, the location
of the files, the presence of ROIs or analyses, etc.

PwsMetaData A class that represents the metadata of a PWS acquisi-
tion.

DynMetaData A class that represents the metadata of a Dynamics ac-
quisition.

ERMetaData A class representing the extra information related to an
ExtraReflectanceCube file.

FluorMetaData Metadata for a fluorescence image.

pwspy.dataTypes.PwsMetaData

class pwspy.dataTypes.PwsMetaData(metadata, filePath=None, fileFormat=None,
acquisitionDirectory=None)

Bases: pwspy.dataTypes._metadata.MetaDataBase, pwspy.dataTypes._metadata.
AnalysisManager

A class that represents the metadata of a PWS acquisition.

Parameters metadata (dict) – The dictionary containing the metadata.

class FileFormats(value)
Bases: enum.Enum

An enumeration.

18 Chapter 2. API

pwspy Documentation, Release 0.2.14

static decodeHdfMetadata(d)
Attempt to extract a dictionary of metadata from an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to load from.

Return type dict

Returns A dictionary containing the metadata

encodeHdfMetadata(d)
Save this metadata object as a json string in an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to save the metadata to.

Return type Dataset

classmethod fromNano(directory, lock=None, acquisitionDirectory=None)
Attempt to load from NanoCytomic .mat file format

Parameters directory (str) – The file path to load the metadata from.

Return type PwsMetaData

Returns A new instance of PwsMetaData loaded from file

classmethod fromOldPWS(directory, lock=None, acquisitionDirectory=None)
Attempt to load from the old .mat file format.

Parameters directory – The file path to load the metadata from.

Return type PwsMetaData

Returns A new instance of PwsMetaData loaded from file

classmethod fromTiff(directory, lock=None, acquisitionDirectory=None)
Attempt to load from the standard TIFF file format.

Parameters directory – The file path to load the metadata from.

Return type PwsMetaData

Returns A new instance of PwsMetaData loaded from file

getAnalyses()

Return type List[str]

Returns A list of the names of analyses that were found.

classmethod getAnalysesAtPath(path)

Parameters path (str) – The path to search for analysis files.

Return type List[str]

Returns A list of the names of analyses that were found.

static getAnalysisResultsClass()

Return type t_.Type[AbstractHDFAnalysisResults]

Returns The class that is used to contain analysis results for this acquisition type.

getThumbnail()

2.2. pwspy.dataTypes 19

pwspy Documentation, Release 0.2.14

Return type ndarray

Returns An image for quick viewing of the acquisition. No numerical significance.

loadAnalysis(name)

Parameters name (str) – The name of the analysis to load.

Return type AbstractHDFAnalysisResults

Returns A new instance of an AnalysisResults object.

classmethod loadAny(directory, lock=None, acquisitionDirectory=None)
Attempt to load from any file format.

Parameters directory – The file path to load the metadata from.

Return type PwsMetaData

Returns A new instance of PwsMetaData loaded from file

metadataToJson(directory)
Save the metadata to a JSON file.

Parameters directory – The folder path to save the new file to.

removeAnalysis(name)

Parameters name (str) – The name of the analysis to be deleted

saveAnalysis(analysis, name, overwrite=False)

Parameters

• analysis (AbstractHDFAnalysisResults) – An AnalysisResults object to be saved.

• name (str) – The name to save the analysis as

• overwrite (bool) – If True then any existing file of the same name will be replaced. If
False an exception will be raised.

toDataClass(lock=None)
Convert the metadata class to a class that loads the data

Parameters lock (Optional[Lock]) – A Lock object used to synchronize IO in multithreaded
and multiprocessing applications.

Return type PwsCube

property binning: int
The binning setting used by the camera. This is needed in order to properly correct dark counts. This is
generally extracted from metadata saved by Micromanager

Return type int

property exposure: float
The exposure time of the camera expressed in milliseconds.

Return type float

idTag

20 Chapter 2. API

pwspy Documentation, Release 0.2.14

property pixelSizeUm: float
The pixelSize expressed in microns. This represents the length of each square pixel in object space. Binning
has already been accounted for here. This is generally extracted from metadata saved my MicroManager

Return type float

property systemName: str
The name of the system this was acquired on. The name is set in the PWS Acquisition Plugin for Micro-
manager.

Return type str

property time: str
The date and time that the acquisition was taken.

Return type str

pwspy.dataTypes.DynMetaData

class pwspy.dataTypes.DynMetaData(metadata, filePath=None, fileFormat=None,
acquisitionDirectory=None)

Bases: pwspy.dataTypes._metadata.MetaDataBase, pwspy.dataTypes._metadata.
AnalysisManager

A class that represents the metadata of a Dynamics acquisition.

class FileFormats(value)
Bases: enum.Enum

An enumerator identifying the types of file formats that this class can be loaded from.

static decodeHdfMetadata(d)
Attempt to extract a dictionary of metadata from an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to load from.

Return type dict

Returns A dictionary containing the metadata

encodeHdfMetadata(d)
Save this metadata object as a json string in an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to save the metadata to.

Return type Dataset

classmethod fromOldPWS(directory, lock=None, acquisitionDirectory=None)
Loads old dynamics cubes which were saved the same as old pws cubes. a raw binary file with some
metadata saved in random .mat files. Does not support automatic detection of binning, pixel size, camera
dark counts, system name.

Parameters directory (str) – The path to the folder containing the data files load the metadata
from.

Return type DynMetaData

Returns A new instance of DynMetaData.

classmethod fromTiff(directory, lock=None, acquisitionDirectory=None)

Parameters directory – The path to the folder containing the data files load the metadata from.

2.2. pwspy.dataTypes 21

pwspy Documentation, Release 0.2.14

Return type DynMetaData

Returns A new instance of DynMetaData loaded from file.

getAnalyses()

Return type List[str]

Returns A list of the names of analyses that were found.

classmethod getAnalysesAtPath(path)

Parameters path (str) – The path to search for analysis files.

Return type List[str]

Returns A list of the names of analyses that were found.

static getAnalysisResultsClass()

Return type t_.Type[AbstractHDFAnalysisResults]

Returns The class that is used to contain analysis results for this acquisition type.

getThumbnail()
Return the image used for quick viewing of the acquisition. Has no numeric significance.

Return type ndarray

loadAnalysis(name)

Parameters name (str) – The name of the analysis to load.

Return type AbstractHDFAnalysisResults

Returns A new instance of an AnalysisResults object.

removeAnalysis(name)

Parameters name (str) – The name of the analysis to be deleted

saveAnalysis(analysis, name, overwrite=False)

Parameters

• analysis (AbstractHDFAnalysisResults) – An AnalysisResults object to be saved.

• name (str) – The name to save the analysis as

• overwrite (bool) – If True then any existing file of the same name will be replaced. If
False an exception will be raised.

toDataClass(lock=None)

Parameters lock (mp.Lock) – A multiprocessing lock that can prevent help us synchronize
demands on the hard drive when loading many files in parallel. Probably not needed.

Returns The data object associated with this metadata object.

Return type pwsdtmd.DynCube

22 Chapter 2. API

pwspy Documentation, Release 0.2.14

property binning: int
The binning setting used by the camera. This is needed in order to properly correct dark counts. This is
generally extracted from metadata saved by Micromanager

Return type int

property exposure: float
The exposure time of the camera expressed in milliseconds.

Return type float

property idTag: str
Returns: str: A unique string identifying this acquisition.

Return type str

property pixelSizeUm: float
The pixelSize expressed in microns. This represents the length of each square pixel in object space. Binning
has already been accounted for here. This is generally extracted from metadata saved my MicroManager

Return type float

property systemName: str
The name of the system this was acquired on. The name is set in the PWS Acquisition Plugin for Micro-
manager.

Return type str

property time: str
The date and time that the acquisition was taken.

Return type str

property times: Tuple[float, ...]
A sequence indicatin the time associated with each 2D slice of the 3rd axis of the data array

Return type Tuple[float, . . .]

property wavelength: int
The wavelength that this acquisition was acquired at.

Return type int

pwspy.dataTypes.ERMetaData

class pwspy.dataTypes.ERMetaData(inheritedMetadata, numericalAperture, filePath=None)
Bases: object

A class representing the extra information related to an ExtraReflectanceCube file. This can be useful as a object
to keep track of a ExtraReflectanceCube without having to have the data from the file loaded into memory.

Parameters

• inheritedMetadata (dict) – The metadata dictionary will often just be inherited infor-
mation from one of the PwsCubes that was used to create this ER Cube. While this data can
be useful it should be taken with a grain of salt. E.G. the metadata will contain an exposure
field. In reality this ER Cube will have been created from pwsdtd.PwsCubes at a variety of
exposures.

• numericalAperture (float) – The numerical aperture that the PwsCubes used to generate
this Extra reflection cube were imaged at.

• filePath (Optional[str]) – The path to the file that this object is stored in.

2.2. pwspy.dataTypes 23

pwspy Documentation, Release 0.2.14

classmethod dirName2Directory(directory, name)
This is the inverse of directory2dirName

Return type str

classmethod directory2dirName(path)

Parameters path (str) – The path to the file that stores an ExtraReflectanceCube object.

Returns directory: The directory path, name: The name that the file was saved as.

Return type A tuple containing

classmethod fromHdfDataset(d, filePath=None)

Parameters d (Dataset) – The h5py.Dataset to load the object from.

Return type ERMetaData

Returns A new instance of ERMetaData object

classmethod fromHdfFile(directory, name)

Parameters

• directory (str) – The directory the file is saved in.

• name (str) – The name the object was saved as.

Return type ERMetaData

Returns A new instance of ERMetaData object

toHdfDataset(g)

Parameters g (Group) – The h5py.Group to save the new dataset into.

Return type Group

classmethod validPath(path)

Parameters path (str) – The file path to the file to search for valid ExtraReflectance files.

Returns validPath: True if the path is valid, directory: The directory the file is in, name: The
name that the object was saved as.

Return type A tuple containing

property idTag: str
A unique tag to identify this acquisition by.

Return type str

property numericalAperture: float
The numerical aperture that this cube was imaged at.

Return type float

property systemName: str
The name of the system that this image was acquired on.

Return type str

24 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.dataTypes.FluorMetaData

class pwspy.dataTypes.FluorMetaData(md, filePath=None, acquisitionDirectory=None)
Bases: pwspy.dataTypes._metadata.MetaDataBase

Metadata for a fluorescence image.

Parameters md (dict) – A dictionary containing the metadata

static decodeHdfMetadata(d)
Attempt to extract a dictionary of metadata from an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to load from.

Return type dict

Returns A dictionary containing the metadata

encodeHdfMetadata(d)
Save this metadata object as a json string in an HDF5 dataset.

Parameters d (Dataset) – The h5py.Dataset to save the metadata to.

Return type Dataset

classmethod fromTiff(directory, acquisitionDirectory)
Load from a TIFF file.

Parameters directory (str) – The path to the folder to load from.

Return type FluorMetaData

Returns A new instance of FluorMetaData loaded from file.

getThumbnail()

Return type ndarray

Returns An image for quick viewing of the acquisition. No numerical significance.

classmethod isValidPath(directory)

Parameters directory (str) – The path to search for valid files.

Returns True if a valid file was found.

toDataClass(lock=None)
Convert the metadata class to a class that loads the data

Parameters lock (Optional[Lock]) – A Lock object used to synchronize IO in multithreaded
and multiprocessing applications.

Return type FluorescenceImage

property binning: int
The binning setting used by the camera. This is needed in order to properly correct dark counts. This is
generally extracted from metadata saved by Micromanager

Return type int

property exposure: float
The exposure time of the camera expressed in milliseconds.

Return type float

2.2. pwspy.dataTypes 25

pwspy Documentation, Release 0.2.14

property idTag
A string that uniquely identifies this data.

property pixelSizeUm: float
The pixelSize expressed in microns. This represents the length of each square pixel in object space. Binning
has already been accounted for here. This is generally extracted from metadata saved my MicroManager

Return type float

property systemName: str
The name of the system this was acquired on. The name is set in the PWS Acquisition Plugin for Micro-
manager.

Return type str

property time: str
The date and time that the acquisition was taken.

Return type str

2.2.2 Data Classes

These classes are used to actuallly load and manipulate acquisition data. The all have a corresponding metadata class.

PwsCube A class representing a single PWS acquisition.
DynCube A class representing a single acquisition of PWS Dy-

namics.
KCube A class representing an PwsCube after being trans-

formed from being described in terms of wavelength to
wavenumber (k-space).

ExtraReflectanceCube This class represents a 3D data cube of the extra re-
flectance in a PWS system.

ExtraReflectionCube This class is meant to be constructed from an ExtraR-
eflectanceCube along with additional reference mea-
surement information.

ICBase A class to handle the data operations common to PWS
related image cubes.

ICRawBase This class represents data cubes which are not derived
from other data cubes.

pwspy.dataTypes.PwsCube

class pwspy.dataTypes.PwsCube(data, metadata, processingStatus=None, dtype=<class 'numpy.float32'>)
Bases: pwspy.dataTypes._data.ICRawBase

A class representing a single PWS acquisition. Contains methods for loading and saving to multiple formats as
well as common operations used in analysis.

Parameters

• data – A 3-dimensional array containing the data. The dimensions should be [Y, X, Z] where
X and Y are the spatial coordinates of the image and Z corresponds to the index dimension,
e.g. wavelength, wavenumber, time, etc.

• metadata (PwsMetaData) – The metadata object associated with this data object.

26 Chapter 2. API

pwspy Documentation, Release 0.2.14

• processingStatus (Optional[ProcessingStatus]) – An object that keeps track of
which processing steps and corrections have been applied to this object.

• dtype (type) – the data type that the data should be stored as. The default is numpy.float32.

class ProcessingStatus(cameraCorrected=False, normalizedByExposure=False,
extraReflectionSubtracted=False, normalizedByReference=False)

Bases: object

Keeps track of which processing steps have been applied to an ICRawBase object. By default none of these
things have been done for raw data

correctCameraEffects(correction=None, binning=None)
Subtracts the darkcounts from the data. count is darkcounts per pixel. binning should be specified if it wasn’t
saved in the micromanager metadata. Both method arguments should be able to be loaded automatically
from the metadata but for older data files they will need to be supplied manually.

Parameters

• correction (Optional[CameraCorrection]) – The cameracorrection object providing
information on how to correct the data.

• binning (Optional[int]) – The binning that the raw data was imaged at. 2 = 2x2 binning,
3 = 3x3 binning, etc.

classmethod decodeHdf(d)
Load a new instance of ICRawBase from an h5py.Dataset

Parameters d (h5py.Dataset) – The dataset that the ICBase has been saved to

Returns data: The 3D array of data index: A tuple containing the index metadata: A dictionary
containing metadata. procStatus: The processing status of the object.

Return type A tuple containing

filterDust(kernelRadius, pixelSize=None)
This method blurs the data of the PwsCube along the X and Y dimensions. This is useful if the PwsCube
is being used as a reference to normalize other PwsCube. It helps blur out dust adn other unwanted small
features.

Parameters

• kernelRadius (float) – The sigma of the gaussian kernel used for blurring. A greater
value results in greater blurring. If pixelSize is provided then this is in units of pixelSize,
otherwise it is in units of pixels.

• pixelSize (Optional[float]) – The size (usualy in units of microns) of each pixel in
the datacube. This can generally be loaded automatically from the metadata.

Return type None

classmethod fromHdfDataset(d)
Load an PwsCube from an HDF5 dataset.

classmethod fromMetadata(meta, lock=None)
If provided with an PwsMetaData object this function will automatically select the correct file loading
method and will return the associated PwsCube.

Parameters

• meta (PwsMetaData) – The metadata to use to load the object from.

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

2.2. pwspy.dataTypes 27

pwspy Documentation, Release 0.2.14

Return type PwsCube

Returns A new instance of PwsCube.

classmethod fromNano(directory, metadata=None, lock=None)
Loads from the file format used at NC. all data and metadata is contained in a .mat file.

Parameters

• directory (str) – The directory containing the data files.

• metadata (Optional[PwsMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Return type PwsCube

Returns A new instance of PwsCube.

classmethod fromOldPWS(directory, metadata=None, lock=None)
Loads from the file format that was saved by the all-matlab version of the Basis acquisition code. Data was
saved in raw binary to a file called image_cube. Some metadata was saved to .mat files called info2 and
info3.

Parameters

• directory (str) – The directory containing the data files.

• metadata (Optional[PwsMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Returns A new instance of PwsCube.

classmethod fromTiff(directory, metadata=None, lock=None)
Loads from a 3D tiff file named pws.tif, or in some older data MMStack.ome.tif. Metadata can be stored in
the tags of the tiff file but if there is a pwsmetadata.json file found then this is preferred. A multiprocess-
ing.Lock object can be passed to this function so that it will acquire a lock during the hard-drive intensive
parts of the function. this is useful in multi-core contexts.

Parameters

• directory – The directory containing the data files.

• metadata (Optional[PwsMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Returns A new instance of PwsCube.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

28 Chapter 2. API

pwspy Documentation, Release 0.2.14

Returns The average spectra within the region, the standard deviation of the spectra within the
region

static getMetadataClass()

Return type Type[PwsMetaData]

Returns The metadata class associated with this subclass of ICRawBase

classmethod loadAny(directory, metadata=None, lock=None)
Attempt to load a PwsCube for any format of file in directory

Parameters

• directory (str) – The directory containing the data files.

• metadata (Optional[PwsMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Returns A new instance of PwsCube.

normalizeByExposure()
This is one of the first steps in most analysis pipelines. Data is divided by the camera exposure. This way
two PwsCube that were acquired at different exposure times will still be on equivalent scales.

normalizeByReference(reference)
Normalize the raw data of this data cube by a reference cube to result in data representing arbitrarily scaled
reflectance.

Parameters reference (PwsCube) – A reference acquisition (Usually a blank spot on a dish).
The data of this acquisition will be divided by the data of the reference

performFullPreProcessing(reference, referenceMaterial, extraReflectance, cameraCorrection=None)
Use the subtractExtraReflection, normalizeByReference, correctCameraEffects, and normalizeByExposure
methods to perform the standard pre-processing that is done before analysis.

Note: This will also end up applying corrections to the reference data. If you want to perform pre-processing
on a whole batch of data then you should implement your own script based on what is done here.

Parameters

• reference (self.__class__) – A data cube to be used as a reference for normalization.
Usually an image of a blank dish with cell media or air.

• referenceMaterial (Material) – The material that was imaged in the reference dish.
The theoretically expected reflectance will be calculated assuming a “Glass/{Material}”
reflective interface.

• extraReflectance (ExtraReflectanceCube) – The data cube containing system in-
ternal reflectance calibration information about the specific system configuration that the
data was taken with.

plotMean()

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

2.2. pwspy.dataTypes 29

pwspy Documentation, Release 0.2.14

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type PwsCube

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

subtractExtraReflection(extraReflection)
Subtract the portion of the signal that is due to internal reflections of the optical system from the data.

Parameters extraReflection (ExtraReflectionCube) – A calculated data cube indicating
in units of camera counts how much of the data is from unwanted internal reflections of the
system.

toHdfDataset(g, name, fixedPointCompression=True)
Save this object into an HDF dataset.

Parameters

• g (Group) – The h5py.Group object to create a new dataset in.

• name (str) – The name of the new dataset.

• fixedPointCompression (bool) – If True then the data will be converted from floating
point to 16-bit fixed point. This results in approximately half the storage requirements at a
very slight loss in precision.

Return type Group

Returns A reference to the h5py.Group passed in as g.

toOldPWS(directory)
Save this object to the old .mat based storage format.

Parameters directory – The path to the folder to save the data files to.

toTiff(outpath, dtype=<class 'numpy.uint16'>)
Save the PwsCube to the standard TIFF file format.

30 Chapter 2. API

pwspy Documentation, Release 0.2.14

Parameters outpath (str) – The path to save the new TIFF file to.

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

property wavelengths
A tuple containing the values of the wavelengths for the data.

pwspy.dataTypes.DynCube

class pwspy.dataTypes.DynCube(data, metadata, processingStatus=None, dtype=<class 'numpy.float32'>)
Bases: pwspy.dataTypes._data.ICRawBase

A class representing a single acquisition of PWS Dynamics. In which the wavelength is held constant and the 3rd
dimension of the data is time rather than wavelength. This can be analyzed to reveal information about diffusion
rate. Contains methods for loading and saving to multiple formats as well as common operations used in analysis.

Parameters

• data – A 3-dimensional array containing the data. The dimensions should be [Y, X, Z] where
X and Y are the spatial coordinates of the image and Z corresponds to the index dimension,
e.g. wavelength, wavenumber, time, etc.

• metadata (DynMetaData) – The metadata object associated with this data object.

• processingStatus (Optional[ProcessingStatus]) – An object that keeps track of
which processing steps and corrections have been applied to this object.

• dtype – the data type that the data should be stored as. The default is numpy.float32.

class ProcessingStatus(cameraCorrected=False, normalizedByExposure=False,
extraReflectionSubtracted=False, normalizedByReference=False)

Bases: object

Keeps track of which processing steps have been applied to an ICRawBase object. By default none of these
things have been done for raw data

correctCameraEffects(correction=None, binning=None)
Subtracts the darkcounts from the data. count is darkcounts per pixel. binning should be specified if it wasn’t
saved in the micromanager metadata. Both method arguments should be able to be loaded automatically
from the metadata but for older data files they will need to be supplied manually.

Parameters

• correction (Optional[CameraCorrection]) – The cameracorrection object providing
information on how to correct the data.

• binning (Optional[int]) – The binning that the raw data was imaged at. 2 = 2x2 binning,
3 = 3x3 binning, etc.

classmethod decodeHdf(d)
Load a new instance of ICRawBase from an h5py.Dataset

Parameters d (h5py.Dataset) – The dataset that the ICBase has been saved to

Returns data: The 3D array of data index: A tuple containing the index metadata: A dictionary
containing metadata. procStatus: The processing status of the object.

Return type A tuple containing

2.2. pwspy.dataTypes 31

pwspy Documentation, Release 0.2.14

filterDust(kernelRadius, pixelSize=None)
This method blurs the data of the cube along the X and Y dimensions. This is useful if the cube is being
used as a reference to normalize other cube. It helps blur out dust and other unwanted small features.

Parameters

• kernelRadius (float) – The sigma of the gaussian kernel used for blurring. A greater
value results in greater blurring. If pixelSize is provided then this is in units of pixelSize,
otherwise it is in units of pixels.

• pixelSize (Optional[float]) – The size (usualy in units of microns) of each pixel in
the datacube. This can generally be loaded automatically from the metadata.

classmethod fromMetadata(meta, lock=None)
Load a new instance of DynCube based on the information contained in a DynMetaData object.

Parameters

• meta (DynMetaData) – The metadata object to be used for loading.

• lock (Optional[Lock]) – An optional Lock used to synchronize IO operations in multi-
threaded and multiprocessing applications.

Return type DynCube

Returns A new instance of DynCube.

classmethod fromOldPWS(directory, metadata=None, lock=None)
Loads from the file format that was saved by the all-matlab version of the Basis acquisition code. Data was
saved in raw binary to a file called image_cube. Some metadata was saved to .mat files called info2 and
info3.

Parameters

• directory – The directory containing the data files.

• metadata (Optional[DynMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Return type DynCube

Returns A new instance of DynCube.

classmethod fromTiff(directory, metadata=None, lock=None)
Load a dyanmics acquisition from a tiff file. if the metadata for the acquisition has already been loaded
then you can provide is as the metadata argument to avoid loading it again. the lock argument is an optional
place to provide a multiprocessing.Lock which can be used when multiple files in parallel to avoid giving
the hard drive too many simultaneous requests, this is probably not necessary.

Parameters

• directory – The directory containing the data files.

• metadata (Optional[DynMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Return type DynCube

Returns A new instance of DynCube.

32 Chapter 2. API

pwspy Documentation, Release 0.2.14

getAutocorrelation()
Returns the autocorrelation function of dynamics data along the time axis. The ACF is calculated using
fourier transforms using IFFT(FFT(data)*conj(FFT(data)))/length(data).

Return type ndarray

Returns A 3D array of the autocorrelation function of the original data.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

static getMetadataClass()

Return type Type[DynMetaData]

Returns The metadata class associated with this subclass of ICRawBase

classmethod loadAny(directory, metadata=None, lock=None)
Attempt to load a DynCube for any format of file in directory

Parameters

• directory (str) – The directory containing the data files.

• metadata (Optional[DynMetaData]) – The metadata object associated with this acqui-
sition

• lock (Optional[Lock]) – A Lock object used to synchronized IO in multithreading and
multiprocessing applications.

Return type DynCube

Returns A new instance of DynCube.

normalizeByExposure()
This is one of the first steps in most analysis pipelines. Data is divided by the camera exposure. This way
two PwsCube that were acquired at different exposure times will still be on equivalent scales.

normalizeByReference(reference)
This method can accept either a DynCube (in which case it’s average over time will be calculated and
used for normalization) or a 2d numpy Array which should represent the average over time of a reference
DynCube. The array should be 2D and its shape should match the first two dimensions of this DynCube.

Parameters reference (Union[DynCube, ndarray]) – Reference data for normalization. Usu-
ally an image of a blank piece of glass.

performFullPreProcessing(reference, referenceMaterial, extraReflectance, cameraCorrection=None)
Use the subtractExtraReflection, normalizeByReference, correctCameraEffects, and normalizeByExposure
methods to perform the standard pre-processing that is done before analysis.

Note: This will also end up applying corrections to the reference data. If you want to perform pre-processing
on a whole batch of data then you should implement your own script based on what is done here.

Parameters

2.2. pwspy.dataTypes 33

pwspy Documentation, Release 0.2.14

• reference (self.__class__) – A data cube to be used as a reference for normalization.
Usually an image of a blank dish with cell media or air.

• referenceMaterial (Material) – The material that was imaged in the reference dish.
The theoretically expected reflectance will be calculated assuming a “Glass/{Material}”
reflective interface.

• extraReflectance (ExtraReflectanceCube) – The data cube containing system in-
ternal reflectance calibration information about the specific system configuration that the
data was taken with.

plotMean()

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start – The beginning value of the index in the new object. Pass None to include every-
thing.

• stop – The ending value of the index in the new object. Pass None to include everything.

Return type DynCube

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

subtractExtraReflection(extraReflection)
Subtract the portion of the signal that is due to internal reflections of the optical system from the data.

Parameters extraReflection (ndarray) – A calculated data cube indicating in units of cam-
era counts how much of the data is from unwanted internal reflections of the system.

toHdfDataset(g, name, fixedPointCompression=True)
Save this object into an HDF dataset.

Parameters

34 Chapter 2. API

pwspy Documentation, Release 0.2.14

• g (Group) – The h5py.Group object to create a new dataset in.

• name (str) – The name of the new dataset.

• fixedPointCompression (bool) – If True then the data will be converted from floating
point to 16-bit fixed point. This results in approximately half the storage requirements at a
very slight loss in precision.

Return type Group

Returns A reference to the h5py.Group passed in as g.

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

property times: Tuple[float, ...]
Unlike PWS where we operate along the dimension of wavelength, in dynamics we operate along the di-
mension of time.

Return type Tuple[float, . . .]

Returns A tuple of the time values for each 2d slice along the 3rd axis of the data array.

pwspy.dataTypes.KCube

class pwspy.dataTypes.KCube(data, wavenumbers, metadata=None)
Bases: pwspy.dataTypes._data.ICBase

A class representing an PwsCube after being transformed from being described in terms of wavelength to
wavenumber (k-space). Much of the analysis operated in terms of k-space.

Parameters

• data (ndarray) – A 3-dimensional array containing the data. The dimensions should be
[Y, X, Z] where X and Y are the spatial coordinates of the image and Z corresponds to the
index dimension, e.g. wavelength, wavenumber, time, etc.

• wavenumbers (Tuple[float]) – A sequence indicating the wavenumber associated with
each 2D slice along the 3rd axis of the data array.

• metadata (Optional[PwsMetaData]) – The metadata object associated with this data ob-
ject.

classmethod decodeHdf(d)
Load a new instance of ICBase from an h5py.Dataset

Parameters d (Dataset) – The dataset that the ICBase has been saved to

Returns (data: The 3D array of data, index: A tuple containing the index)

Return type A tuple containing

filterDust(sigma, pixelSize)
Blurs the data cube in the X and Y dimensions. Often used to remove the effects of dust on a normalization.

Parameters

• sigma (float) – This specifies the radius of the gaussian filter used for blurring. The units
of the value are determined by pixelSize

• pixelSize (float) – The pixel size in microns. Settings this to 1 will effectively causes
sigma to be in units of pixels rather than microns.

2.2. pwspy.dataTypes 35

pwspy Documentation, Release 0.2.14

classmethod fromHdfDataset(dataset)
Load the KCube object from an h5py.Dataset in an HDF5 file

Parameters dataset (Dataset) – The h5py.Dataset that the KCube data is stored in.

Returns A new instance of this class.

Return type KCube

static fromOpd(opd, xVals, useHannWindow)
WARNING: This function is untested. it almost certainly doesn’t work. Create a KCube from and opd
in the form returned by KCube.getOpd. This is useful if you want to do spectral manipulation and then
transform back.

classmethod fromPwsCube(cube)
Convert an PwsCube into a KCube. Data is converted from wavelength to wavenumber (1/lambda), inter-
polation is then used to linearize the data in terms of wavenumber.

Parameters cube (PwsCube) – The PwsCube object to generate a KCube object from.

Return type KCube

Returns A new instance of KCube

getAutoCorrelation(isAutocorrMinSub, stopIndex)
The autocorrelation of a signal is the covariance of a signal with a lagged version of itself, normalized so
that the covariance at zero-lag is equal to 1.0 (c[0] = 1.0). The same process without normalization is the
autocovariance.

A fast method for determining the autocovariance of a signal with itself is to utilize fast-fourier transforms.
In this method, the signal is converted to the frequency domain using fft. The frequency-domain signal is
then convolved with itself. The inverse fft is performed on this self-convolution, yielding the autocorrela-
tion.

In this instance, the autocorrelation is determined for a series of lags, Z. Z is equal to [-P+1:P-1], where P
is the quantity of measurements in each signal (the quantity of wavenumbers). Thus, the quantity of lags
is equal to (2*P)-1. The fft process is fastest when performed on signals with a length equal to a power of
2. To take advantage of this property, a Z-point fft is performed on the signal, where Z is a number greater
than (2*P)-1 that is also a power of 2.

Return type Tuple[ndarray, ndarray]

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

getOpd(useHannWindow, indexOpdStop=None, mask=None)
Calculate the Fourier transform of each spectra. This can be used to get the distance (in terms of OPD) to
objects that are reflecting light.

Parameters

• useHannWindow (bool) – If True, apply a Hann window to the data before the FFT. This
reduces spectral resolution but improves dynamic range and reduces “frequency leakage”.

36 Chapter 2. API

pwspy Documentation, Release 0.2.14

• indexOpdStop (Optional[int]) – This parameter is a holdover from the original MAT-
LAB implementation. Truncates the 3rd axis of the OPD array.

• mask (Optional[ndarray]) – A 2D boolean numpy array indicating which pixels should
be processed.

Returns

opd: The 3D array of values, opdIndex: The sequence of OPD values associated with each
2D slice along the 3rd axis of the opd data.

Return type A tuple containing

getRMSFromOPD(lowerOPD, upperOPD, useHannWindow=False)
Use Parseval’s Theorem to calculate our signal RMS from the OPD (magnitude of fourier transform). This
allows us to calculate RMS using only contributions from certain OPD ranges which ideally are correlated
with a specific depth into the sample. In practice the large frequency leakage due to our limited bandwidth
of measurement causes this assumption to break down, but it can still be useful if taken with a grain of salt.

Parameters

• lowerOPD (float) – RMS will be integrated starting at this lower limit of OPD. Note for
a reflectance setup like PWS sampleDepth = OPD / (2 * meanSampleRI)

• upperOPD (float) – RMS will be integrated up to this upper OPD limit.

• useHannWindow (bool) – If False then use no windowing on the FFT to calculate OPD.
If True then use and Hann window.

Return type ndarray

Returns A 2d numpy array of the signal RMS at each XY location in the image.

plotMean()

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type Tuple[ndarray, Sequence]

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

2.2. pwspy.dataTypes 37

pwspy Documentation, Release 0.2.14

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

toHdfDataset(g, name, fixedPointCompression=True, compression=None)
Save the data of this class to a new HDF dataset.

Parameters

• g (h5py.Group) – the parent HDF Group of the new dataset.

• name (str) – the name of the new HDF dataset in group g.

• fixedPointCompression (bool) – if True then save the data in a special 16bit fixed-point
format. Testing has shown that this has a maximum conversion error of 1.4e-3 percent.
Saving is ~10% faster but requires only 50% the hard drive space.

• compression (Optional[str]) – The value of this argument will be passed to
h5py.create_dataset for numpy arrays. See h5py documentation for available options.

Returns This is the the same h5py.Group that was passed in a g. It should now have a new dataset
by the name of ‘name’

Return type h5py.Group

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

pwspy.dataTypes.ExtraReflectanceCube

class pwspy.dataTypes.ExtraReflectanceCube(data, wavelengths, metadata)
Bases: pwspy.dataTypes._data.ICBase

This class represents a 3D data cube of the extra reflectance in a PWS system.

Parameters

• data (ndarray) – A 3D array of the extra reflectance in the system. It’s values are in units
of reflectance (between 0 and 1).

• wavelengths (Tuple[float, . . .]) – The wavelengths associated with each 2D slice along
the 3rd axis of the data array.

• metadata (ERMetaData) – Metadata

metadata
metadata

Type ERMetaData

data
data

Type ndarray

38 Chapter 2. API

pwspy Documentation, Release 0.2.14

classmethod decodeHdf(d)
Load a new instance of ICBase from an h5py.Dataset

Parameters d (Dataset) – The dataset that the ICBase has been saved to

Returns (data: The 3D array of data, index: A tuple containing the index)

Return type A tuple containing

filterDust(sigma, pixelSize)
Blurs the data cube in the X and Y dimensions. Often used to remove the effects of dust on a normalization.

Parameters

• sigma (float) – This specifies the radius of the gaussian filter used for blurring. The units
of the value are determined by pixelSize

• pixelSize (float) – The pixel size in microns. Settings this to 1 will effectively causes
sigma to be in units of pixels rather than microns.

classmethod fromHdfDataset(d, filePath=None)
Load the ExtraReflectanceCube from d, an HDF5 dataset.

Parameters

• d (Dataset) – The h5py.Dataset to load the cube from.

• filePath (Optional[str]) – The path to the HDF file that the dataset came from.

Return type ExtraReflectanceCube

Returns A new instance of ExtraReflectanceCube loaded from HDF.

classmethod fromHdfFile(directory, name)
Load an ExtraReflectanceCube from an HDF5 file. name should be the file name, excluding the ‘_ExtraR-
eflectance.h5’ suffix.

Parameters

• directory (str) – The path to the folder containing the HDF file.

• name (str) – The name that the cube was saved as.

Return type ExtraReflectanceCube

Returns A new instance of ExtraReflectanceCube loaded from HDF.

classmethod fromMetadata(md)
Load an ExtraReflectanceCube from an ERMetaData object corresponding to an HDF5 file.

Parameters md (ERMetaData) – The metadata to be used for loading the data file.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

plotMean()

2.2. pwspy.dataTypes 39

pwspy Documentation, Release 0.2.14

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type Tuple[ndarray, Sequence]

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

toHdfDataset(g)
Save the ExtraReflectanceCube to an HDF5 dataset. g should be an h5py Group or File.

Parameters g (Group) – The h5py.Group to save to.

Return type Group

toHdfFile(directory, name)
Save an ExtraReflectanceCube to an HDF5 file. The filename will be name with the ‘_ExtraReflectance.h5’
suffix.

Parameters

• directory (str) – The path to the folder to save the HDF file to.

• name (str) – The name that the cube should be saved as.

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

property wavelengths: Tuple[float, ...]
Returns: The wavelengths corresponding to each element along the 3rd axis of self.data.

40 Chapter 2. API

pwspy Documentation, Release 0.2.14

Return type Tuple[float, . . .]

pwspy.dataTypes.ExtraReflectionCube

class pwspy.dataTypes.ExtraReflectionCube(data, wavelengths, metadata)
Bases: pwspy.dataTypes._data.ICBase

This class is meant to be constructed from an ExtraReflectanceCube along with additional reference measurement
information. Rather than being in units of reflectance (between 0 and 1) it is in the same units as the reference
measurement that is provided with, usually counts/ms or just counts.

Parameters

• data (ndarray) – The 3D array of the extra reflection in the system. In units of counts/ms
or just counts

• wavelengths (Tuple[float, . . .]) – The wavelengths associated with each 2D slice along
the 3rd axis of the data array.

• metadata (ERMetaData) – Metadata

classmethod create(reflectance, theoryR, reference)
Construct and ExtraReflectionCube from an ExtraReflectanceCube and a reference measurement. The re-
sulting ExtraReflectionCube will be in the same units as reference. theoryR should be a spectrum describing
the theoretically expected reflectance of the reference data cube. Both theoryR and reflectance should be
in units of reflectance (between 0 and 1).

Parameters

• reflectance (ExtraReflectanceCube) – The ExtraReflectanceCube to construct an
ExtraReflectionCube from.

• theoryR (Series) – The theoretically predicted reflectance of material imaged in refer-
ence.

• reference (PwsCube) – A PWS image of a blank glass-{material} interface, usually wa-
ter.

Return type ExtraReflectionCube

Returns A new instance of ExtraReflectionCube.

classmethod decodeHdf(d)
Load a new instance of ICBase from an h5py.Dataset

Parameters d (Dataset) – The dataset that the ICBase has been saved to

Returns (data: The 3D array of data, index: A tuple containing the index)

Return type A tuple containing

filterDust(sigma, pixelSize)
Blurs the data cube in the X and Y dimensions. Often used to remove the effects of dust on a normalization.

Parameters

• sigma (float) – This specifies the radius of the gaussian filter used for blurring. The units
of the value are determined by pixelSize

• pixelSize (float) – The pixel size in microns. Settings this to 1 will effectively causes
sigma to be in units of pixels rather than microns.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

2.2. pwspy.dataTypes 41

pwspy Documentation, Release 0.2.14

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

plotMean()

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type Tuple[ndarray, Sequence]

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

toHdfDataset(g, name, fixedPointCompression=True, compression=None)
Save the data of this class to a new HDF dataset.

Parameters

• g (h5py.Group) – the parent HDF Group of the new dataset.

• name (str) – the name of the new HDF dataset in group g.

• fixedPointCompression (bool) – if True then save the data in a special 16bit fixed-point
format. Testing has shown that this has a maximum conversion error of 1.4e-3 percent.
Saving is ~10% faster but requires only 50% the hard drive space.

42 Chapter 2. API

pwspy Documentation, Release 0.2.14

• compression (Optional[str]) – The value of this argument will be passed to
h5py.create_dataset for numpy arrays. See h5py documentation for available options.

Returns This is the the same h5py.Group that was passed in a g. It should now have a new dataset
by the name of ‘name’

Return type h5py.Group

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

pwspy.dataTypes.ICBase

class pwspy.dataTypes.ICBase(data, index, dtype=<class 'numpy.float32'>)
Bases: abc.ABC

A class to handle the data operations common to PWS related image cubes. Does not contain any file specific
functionality. uses the generic index attribute which can be overridden by derived classes to be wavelength,
wavenumber, time, etc.

Parameters

• data (np.ndarray) – A 3-dimensional array containing the data the dimensions should be
[Y, X, Z] where X and Y are the spatial coordinates of the image and Z corresponds to the
index dimension, e.g. wavelength, wavenumber, time, etc.

• index (tuple(Number)) – A tuple containing the values of the index for the data. This
could be a tuple of wavelength values, times (in the case of Dyanmics), etc.

• dtype (type) – the data type that the data should be stored as. The default is numpy.float32.

classmethod decodeHdf(d)
Load a new instance of ICBase from an h5py.Dataset

Parameters d (Dataset) – The dataset that the ICBase has been saved to

Returns (data: The 3D array of data, index: A tuple containing the index)

Return type A tuple containing

filterDust(sigma, pixelSize)
Blurs the data cube in the X and Y dimensions. Often used to remove the effects of dust on a normalization.

Parameters

• sigma (float) – This specifies the radius of the gaussian filter used for blurring. The units
of the value are determined by pixelSize

• pixelSize (float) – The pixel size in microns. Settings this to 1 will effectively causes
sigma to be in units of pixels rather than microns.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

2.2. pwspy.dataTypes 43

pwspy Documentation, Release 0.2.14

plotMean()

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type Tuple[ndarray, Sequence]

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

toHdfDataset(g, name, fixedPointCompression=True, compression=None)
Save the data of this class to a new HDF dataset.

Parameters

• g (h5py.Group) – the parent HDF Group of the new dataset.

• name (str) – the name of the new HDF dataset in group g.

• fixedPointCompression (bool) – if True then save the data in a special 16bit fixed-point
format. Testing has shown that this has a maximum conversion error of 1.4e-3 percent.
Saving is ~10% faster but requires only 50% the hard drive space.

• compression (Optional[str]) – The value of this argument will be passed to
h5py.create_dataset for numpy arrays. See h5py documentation for available options.

Returns This is the the same h5py.Group that was passed in a g. It should now have a new dataset
by the name of ‘name’

Return type h5py.Group

44 Chapter 2. API

pwspy Documentation, Release 0.2.14

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

pwspy.dataTypes.ICRawBase

class pwspy.dataTypes.ICRawBase(data, index, metadata, processingStatus=None, dtype=<class
'numpy.float32'>)

Bases: pwspy.dataTypes._data.ICBase, abc.ABC

This class represents data cubes which are not derived from other data cubes. They represent raw acquired data
that exists as data files on the computer. For this reason they may need to have hardware specific corrections
applied to them such as normalizing out exposure time, linearizing camera counts, subtracting dark counts, etc.
The most important change is the addition of metadata.

Parameters

• data (np.ndarray) – A 3-dimensional array containing the data. The dimensions should
be [Y, X, Z] where X and Y are the spatial coordinates of the image and Z corresponds to
the index dimension, e.g. wavelength, wavenumber, time, etc.

• index (tuple) – A tuple containing the values of the index for the data. This could be a
tuple of wavelength values, times (in the case of Dynamics), etc.

• metadata (pwsdtmd.MetaDataBase) – The metadata object associated with this data ob-
ject.

• processingStatus (ProcessingStatus) – An object that keeps track of which process-
ing steps and corrections have been applied to this object.

• dtype (type) – the data type that the data should be stored as. The default is numpy.float32.

class ProcessingStatus(cameraCorrected=False, normalizedByExposure=False,
extraReflectionSubtracted=False, normalizedByReference=False)

Bases: object

Keeps track of which processing steps have been applied to an ICRawBase object. By default none of these
things have been done for raw data

correctCameraEffects(correction=None, binning=None)
Subtracts the darkcounts from the data. count is darkcounts per pixel. binning should be specified if it wasn’t
saved in the micromanager metadata. Both method arguments should be able to be loaded automatically
from the metadata but for older data files they will need to be supplied manually.

Parameters

• correction (Optional[CameraCorrection]) – The cameracorrection object providing
information on how to correct the data.

• binning (Optional[int]) – The binning that the raw data was imaged at. 2 = 2x2 binning,
3 = 3x3 binning, etc.

classmethod decodeHdf(d)
Load a new instance of ICRawBase from an h5py.Dataset

Parameters d (h5py.Dataset) – The dataset that the ICBase has been saved to

Returns data: The 3D array of data index: A tuple containing the index metadata: A dictionary
containing metadata. procStatus: The processing status of the object.

Return type A tuple containing

2.2. pwspy.dataTypes 45

pwspy Documentation, Release 0.2.14

filterDust(sigma, pixelSize)
Blurs the data cube in the X and Y dimensions. Often used to remove the effects of dust on a normalization.

Parameters

• sigma (float) – This specifies the radius of the gaussian filter used for blurring. The units
of the value are determined by pixelSize

• pixelSize (float) – The pixel size in microns. Settings this to 1 will effectively causes
sigma to be in units of pixels rather than microns.

getMeanSpectra(mask=None)
Calculate the average spectra within a region of the data.

Parameters mask (Union[Roi, ndarray, None]) – An optional other.Roi or boolean numpy
array used to select pixels from the X and Y dimensions of the data array. If left as None then
the full data array will be used as the region.

Return type Tuple[ndarray, ndarray]

Returns The average spectra within the region, the standard deviation of the spectra within the
region

abstract static getMetadataClass()

Return type Type[MetaDataBase]

Returns The metadata class associated with this subclass of ICRawBase

normalizeByExposure()
This is one of the first steps in most analysis pipelines. Data is divided by the camera exposure. This way
two PwsCube that were acquired at different exposure times will still be on equivalent scales.

abstract normalizeByReference(reference)
Normalize the raw data of this data cube by a reference cube to result in data representing arbitrarily scaled
reflectance.

Parameters reference (ForwardRef) – A reference acquisition. Usually an image taken from
a blank piece of glass.

performFullPreProcessing(reference, referenceMaterial, extraReflectance, cameraCorrection=None)
Use the subtractExtraReflection, normalizeByReference, correctCameraEffects, and normalizeByExposure
methods to perform the standard pre-processing that is done before analysis.

Note: This will also end up applying corrections to the reference data. If you want to perform pre-processing
on a whole batch of data then you should implement your own script based on what is done here.

Parameters

• reference (self.__class__) – A data cube to be used as a reference for normalization.
Usually an image of a blank dish with cell media or air.

• referenceMaterial (Material) – The material that was imaged in the reference dish.
The theoretically expected reflectance will be calculated assuming a “Glass/{Material}”
reflective interface.

• extraReflectance (ExtraReflectanceCube) – The data cube containing system in-
ternal reflectance calibration information about the specific system configuration that the
data was taken with.

plotMean()

46 Chapter 2. API

pwspy Documentation, Release 0.2.14

Return type Tuple[Figure, Axes]

Returns

A figure and attached axes plotting the mean of the data along the index axis. corre-
sponds to the mean reflectance in most cases.

selIndex(start, stop)

Parameters

• start (Optional[float]) – The beginning value of the index in the new object. Pass
None to include everything.

• stop (Optional[float]) – The ending value of the index in the new object. Pass None to
include everything.

Return type Tuple[ndarray, Sequence]

Returns A new instance of ICBase with only data from start to stop in the index.

selectLassoROI(displayIndex=None, clim=None)
Allow the user to draw a freehand ROI on an image of the acquisition.

Parameters displayIndex (Optional[int]) – Display a particular z-slice of the array for mask
drawing. If None then the mean along Z is displayed.

Return type Roi

Returns An array of vertices of the polygon drawn.

selectRectangleROI(displayIndex=None)
Allow the user to draw a rectangular ROI on an image of the acquisition.

Parameters displayIndex (int) – is used to display a particular z-slice for mask drawing. If
None then the mean along Z is displayed. Returns an array of vertices of the rectangle.

Returns An array of the 4 XY vertices of the rectangle.

Return type np.ndarray

abstract subtractExtraReflection(extraReflection)
Subtract the portion of the signal that is due to internal reflections of the optical system from the data.

Parameters extraReflection (ExtraReflectionCube) – A calculated data cube indicating
in units of camera counts how much of the data is from unwanted internal reflections of the
system.

toHdfDataset(g, name, fixedPointCompression=True)
Save this object into an HDF dataset.

Parameters

• g (Group) – The h5py.Group object to create a new dataset in.

• name (str) – The name of the new dataset.

• fixedPointCompression (bool) – If True then the data will be converted from floating
point to 16-bit fixed point. This results in approximately half the storage requirements at a
very slight loss in precision.

Return type Group

Returns A reference to the h5py.Group passed in as g.

2.2. pwspy.dataTypes 47

pwspy Documentation, Release 0.2.14

property index: Tuple[float, ...]
Returns: The values of the datacube’s index

Return type Tuple[float, . . .]

2.2.3 Other Classes

Roi This class represents a single Roi used to select a specific
region of an image.

RoiFile This class represents a single Roi File used to save and
load an ROI.

CameraCorrection This class represents all the information needed to cor-
rect camera related hardware defects in our data.

Acquisition This class handles the file structure of a single acquisi-
tion.

FluorescenceImage Represents a fluorescence image taken by the PWS ac-
quisition software.

pwspy.dataTypes.Roi

class pwspy.dataTypes.Roi(mask, verts)
Bases: object

This class represents a single Roi used to select a specific region of an image. The Roi consists of a mask (a
boolean array specifying which pixels are included in the Roi), a set of of vertices (a 2 x N array specifying
the vertices of the polygon enclosing the mask, this is useful if you want to adjust the Roi later. Rather than
calling the constructor directly you will generally create one of these objects through one of the class methods
that construct one for you.

Parameters

• mask (ndarray) – A 2D boolean array where the True values indicate pixels that are within
the ROI.

• verts (Union[ndarray, Polygon]) – Can be a sequence of 2D (x, y) coordinates indicating
the border of the ROI or a shapely Polygon. If an array of coordinates is used then it will
be converted to the shell of a shapely polygon internally. While this information is partially
redundant with the mask it is useful for many applications and can be complicated to calculate
from mask.

classmethod fromMask(mask)
Use rasterio to create find the vertices of a mask. :type mask: ndarray :param mask: A boolean array.
The mask have only one contiguous True region

Return type Roi

Returns A new instance of Roi

classmethod fromVerts(verts, dataShape)
Automatically generate the mask for an Roi using just the vertices of an enclosing polygon.

Parameters

• verts (ndarray) – A sequence of 2D (x, y) coordinates indicating the border of the ROI.

• dataShape (Tuple[float, float]) – A tuple giving the shape of the array that this Roi
is associated with.

48 Chapter 2. API

pwspy Documentation, Release 0.2.14

Return type Roi

Returns A new instance of Roi

Examples

myRoi = Roi.fromVerts(‘nucleus’, 1, polyVerts, (1024, 1024))

transform(matrix)
Return a copy of this Roi that has been transformed by an affine transform matrix like the one returned
by opencv.estimateRigidTransform. This can be obtained using the functions in the utility.machineVision
module.

Parameters matrix (ndarray) – A 2x3 numpy array representing an affine transformation.

Return type Roi

Returns A new instance of Roi representing this Roi after transformation.

property verts: numpy.ndarray
An array of vertices for the outer ring of the polygon. For most ROIs they only have an outer ring anyway.

Return type ndarray

pwspy.dataTypes.RoiFile

class pwspy.dataTypes.RoiFile(name, number, roi, filePath, fileFormat, acquisition)
Bases: object

This class represents a single Roi File used to save and load an ROI. Each Roi File is identified by a name and
a number. The recommended file format is HDF2, in this format multiple rois of the same name but differing
numbers can be saved in a single HDF file.

Parameters

• name (str) – The name used to identify this ROI. Multiple ROIs can share the same name
but must have unique numbers.

• number (int) – The number used to identify this ROI. Each ROI with the same name must
have a unique number.

• roi (Roi) – The ROI object associated with this file.

• filePath (str) – The path to the file that this object was loaded from.

• fileFormat (FileFormats) – The format of the file that this object was loaded from.

• acquisition (Acquisition) – The acquisition object that this ROI belongs to.

class FileFormats(value)
Bases: enum.Enum

An enumerator of the different file formats that an ROI can be saved to.

delete()
Delete the dataset associated with the Roi object.

static deleteRoi(directory, name, number, fformat=None)
Delete the dataset associated with the Roi object specified by name and num.

Parameters

• directory (str) – The path to the folder containing the Roi file.

2.2. pwspy.dataTypes 49

pwspy Documentation, Release 0.2.14

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

• fformat (Optional[FileFormats]) – The format of the file.

Raises FileNotFoundError – If the file isn’t found.

classmethod fromHDF(directory, name, number, acquisition=None)
Load an Roi from the newest ROI format of HDF file.

Parameters

• directory (str) – The path to the directory containing the HDF file.

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

Raises OSError – If the file was not found

Return type RoiFile

Returns A new instance of Roi loaded from file

Examples

myRoi = Roi.fromHDF(‘~/Desktop’, ‘nucleus’, 1)

classmethod fromHDF_legacy(directory, name, number, acquisition=None)
Load an Roi from an HDF file. Uses the old HDF2 format.

Parameters

• directory (str) – The path to the directory containing the HDF file.

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

Raises OSError – If the file was not found

Return type RoiFile

Returns A new instance of Roi loaded from file

Examples

myRoi = Roi.fromHDF(‘~/Desktop’, ‘nucleus’, 1)

classmethod fromHDF_legacy_legacy(directory, name, number, acquisition=None)
Load an Roi from an older version of the HDF file format which did not include the vertices parameter.

Parameters

• directory (str) – The path to the directory containing the HDF file.

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

Raises OSError – If the file was not found

Return type RoiFile

Returns A new instance of Roi loaded from file

50 Chapter 2. API

pwspy Documentation, Release 0.2.14

classmethod fromMat(directory, name, number, acquisition=None)
Load an Roi from a .mat file saved in matlab. This file format is not recommended as it does not include
the vertices parameter which is useful for visually rendering and readjusting the Roi.

Parameters

• directory (str) – The path to the directory containing the HDF file.

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

Return type RoiFile

Returns A new instance of Roi loaded from file

getRoi()
Return the ROI object associated with this file.

Return type Roi

Returns The Roi object containing geometry information.

static getValidRoisInPath(path)
Search the path for valid roiFile files and return the detected rois as a list of tuple where each tuple contains
the name, number, and file format for the Roi.

Parameters path (str) – The path to the folder containing the Roi files.

Returns name: The detected Roi name number: The detected Roi number fformat: The file
format of the file that the Roi is stored in

Return type A list of tuples containing

classmethod loadAny(directory, name, number, acquisition=None)
Attempt loading any of the known file formats.

Parameters

• directory (str) – The path to the directory containing the HDF file.

• name (str) – The name used to identify this ROI.

• number (int) – The number used to identify this ROI.

Return type RoiFile

Returns A new instance of Roi loaded from file

classmethod toHDF(roi, name, number, directory, overwrite=False, acquisition=None)
Save the Roi to an HDF file in the specified directory. The filename is automatically chosen based on the
name parameter of the Roi. Multiple Roi’s with the same name will be saved into the same file if they have
differing number parameters. If overwrite is true then any existing dataset will be replaced, otherwise an
error will be raised.

Parameters

• roi (Roi) – The ROI to save.

• name (str) – The name name to save as. This will be part of the file name

• number (int) – The ROI number to save as. Multiple ROIS of the same name can be saved
to the same file but the numbers must be unique

• directory (str) – The path of the folder to save the new HDF file to. The file will be
named automatically based on the name attribute of the Roi

2.2. pwspy.dataTypes 51

pwspy Documentation, Release 0.2.14

• overwrite (Optional[bool]) – If True then if an Roi with the same number as this Roi
is found it will be overwritten.

Return type RoiFile

update(roi)
Save a new roiFile to the existing file. :type roi: Roi :param roi: The updated ROI to save

pwspy.dataTypes.CameraCorrection

class pwspy.dataTypes.CameraCorrection(darkCounts, linearityPolynomial=None)
Bases: object

This class represents all the information needed to correct camera related hardware defects in our data. This
includes a dark count value (The counts registered when no light is incident on the camera. It also includes a
polynomial that is used to linearize the counts. E.G. if you image something over a range of exposure times you
would expect the measured counts to be proportional to the exposure time. However on some cameras this is not
the case.

darkCounts
Dark count for a single pixel of the camera. This will be subtracted from the data in pre-processing. When
binning is used the dark counts are summed together, so if you measure a dark count of 400 with 2x2
binning then the single pixel dark count is 100.

Type float

linearityPolynomial
Sequence of polynomial coefficients [a,b,c,etc. . .] in the order a*x + b*x^2 + c*x^3 + etc. . . Used to
linearize the counts from the camera so that they are linearly proportional to the image brightness. This
can generally be left as None for sCMOS cameras but it is often required for CCD type cameras.

Type t_.Sequence[float, . . .]

classmethod fromJsonFile(filePath)
Load the camera correction from a json text file.

Parameters filePath (str) – The file path of the JSON file to load from.

Return type CameraCorrection

Returns A new instance of CameraCorrection.

Examples

corr = CameraCorrection.fromJsonFile(‘~/Desktop/camera.json’)

toJsonFile(filePath)
Save the camera correction to a JSON formatted text file.

Parameters filePath (str) – The file path for the new JSON file.

52 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.dataTypes.Acquisition

class pwspy.dataTypes.Acquisition(directory)
Bases: object

This class handles the file structure of a single acquisition. this can include a PWS acquisition as well as colo-
calized Dynamics and fluorescence.

Parameters directory (Union[str, PathLike]) – the file path the root directory of the acquisition

editNotes()
Create a notes.txt file if it doesn’t already exists and open it in a text editor.

getNotes()
Return the contents of notes.txt as a string.

Return type str

getRois()
Return information about the Rois found in the acquisition’s file path. See documentation for
Roi.getValidRoisInPath()

Return type List[Tuple[str, int, FileFormats]]

getThumbnail()
Return a thumbnail from any of the available acquisitions. Should be an 8bit normalized image.

Return type ndarray

hasNotes()
Indicates whether or not a notes.txt file was found.

Return type bool

loadRoi(name, num, fformat=None)
Load a Roi that has been saved to file in the acquisition’s file path.

Return type RoiFile

saveRoi(roiName, roiNumber, roi, overwrite=False)
Save a Roi to file in the acquisition’s file path.

Parameters

• roiName (str) – The name to identify this ROI

• roiNumber (int) – The number to identify this ROI

• roi (Roi) – The ROI object defining the ROI geometry

• overwrite (bool) – If True then any existing ROIFile matching this name and number
will be overwritten. Otherwise an OSError is raised.

Return type RoiFile

Returns A reference to the new ROIFile

Raises OSError – If overwrite is False and an ROI of the same name and number

already exists then an OSError will be raised.

dynamics
Returns None if no dynamics acquisition was found.

Type DynMetaData

2.2. pwspy.dataTypes 53

pwspy Documentation, Release 0.2.14

fluorescence
Newer acquisitions allow for multiple fluorescence images saved to numbered subfolders

Type List[FluorMetaData]

pws
Returns None if no PWS acquisition was found.

Type PwsMetaData

pwspy.dataTypes.FluorescenceImage

class pwspy.dataTypes.FluorescenceImage(data, md)
Bases: object

Represents a fluorescence image taken by the PWS acquisition software.

Parameters

• data (ndarray) – A 2D array of image data.

• md (FluorMetaData) – The metadata object associated with this image.

classmethod fromMetadata(md, lock=None)
Load an image from the metadata object.

Parameters

• md (FluorMetaData) – The metadata object to load the image from.

• lock (Optional[Lock]) – An optional multiprocessing Lock object to synchronize file
access in multiprocessing contexts

Return type FluorescenceImage

Returns A new instance of FluorescenceImage.

classmethod fromTiff(directory, acquisitionDirectory=None)
Load an image from a TIFF file.

Parameters

• directory (str) – The path to the folder containing the TIFF file.

• acquisitionDirectory (Optional[Acquisition]) – The Acquisition object associ-
ated with this acquisition.

Return type FluorescenceImage

Returns A new instanse of FluorescenceImage.

toTiff(directory)
Save this object to a TIFF file.

Parameters directory (str) – The path to the folder to save the new file to.

54 Chapter 2. API

pwspy Documentation, Release 0.2.14

2.2.4 Inheritance

ABC

AnalysisManager

ICRawBase

MetaDataBase

ICBase

DynMetaData

PwsMetaData

DynCube

PwsCube

FluorMetaData

ExtraReflectanceCube

ExtraReflectionCube

KCube

Fig. 1: Abstract base classes define common behavior between the implementations of the various data types making
it easy to write software using PWSpy that will work for all available data type implementations.

2.3 pwspy.utility

Useful subpackages ranging many different topics

2.3.1 Modules

acquisition This package includes functionality for loading exper-
iment information saved by the PWS "Acquisition Se-
quencer" which is part of the PWS plugin for Micro-
Manager.

DConversion Classes
This class is used to connect to the MATLAB Sigma to
D conversion library.

fileIO Functions for quickly loading files using parallel pro-
cessing.

fluorescence Functions related to fluorescent images.
machineVision Useful functions for processing images.
micromanager Objects useful for dealing with files saved by Micro-

Manager.
continues on next page

2.3. pwspy.utility 55

pwspy Documentation, Release 0.2.14

Table 11 – continued from previous page
misc Objects that are generally useful in python program-

ming.
plotting Image Plotting
reflection A package containing functionality useful for calcula-

tion reflections.

pwspy.utility.acquisition

This package includes functionality for loading experiment information saved by the PWS “Acquisition Sequencer”
which is part of the PWS plugin for Micro-Manager.

Functions

loadDirectory(directory) If directory contains a dataset acquired with the acqui-
sition sequencer then this function will return a python
object representing the sequence settings and a list of ref-
erences to the acquisitions that are part of the sequence.

pwspy.utility.acquisition.loadDirectory

pwspy.utility.acquisition.loadDirectory(directory)
If directory contains a dataset acquired with the acquisition sequencer then this function will return a python
object representing the sequence settings and a list of references to the acquisitions that are part of the sequence.

Parameters directory (PathLike) – The file path to the dataset directory.

Returns The Root SequencerStep of the acquisition sequence. A list of SequenceAcquisition objects
belonging to the sequence.

Return type A tuple containing

Classes

RuntimeSequenceSettings(uuid, dateString, ...) This represents the object saved when a new acquisition
is run.

SequenceAcquisition(acquisition) An object linking and acquisition with a sequencerCo-
ordinate file.

SequencerCoordinate(coordSteps, uuid) A coordinate that fully defines a position within a tree of
steps.

SequencerCoordinateRange(coordSteps) A coordinate that can have multiple iterations selected
at once.

SequencerStep(id, settings, stepType[, children]) Implementation of a TreeItem for representing a se-
quencer step.

IterableSequencerStep(*args, **kwargs) A base-class for steps which are iterable.
ZStackStep(*args, **kwargs)

continues on next page

56 Chapter 2. API

pwspy Documentation, Release 0.2.14

Table 13 – continued from previous page
TimeStep(*args, **kwargs)

PositionsStep(*args, **kwargs)

ContainerStep(id, settings, stepType[, children]) A class for steps which can contain other steps within it.

pwspy.utility.acquisition.RuntimeSequenceSettings

class pwspy.utility.acquisition.RuntimeSequenceSettings(uuid, dateString, rootStep)
Bases: object

This represents the object saved when a new acquisition is run.

pwspy.utility.acquisition.SequenceAcquisition

class pwspy.utility.acquisition.SequenceAcquisition(acquisition)
Bases: object

An object linking and acquisition with a sequencerCoordinate file.

acquisition
The pwspy.dataTypes.Acquisition object linking to the raw data

sequencerCoordinate
The coordinate object locating the acquisition within a sequence.

pwspy.utility.acquisition.SequencerCoordinate

class pwspy.utility.acquisition.SequencerCoordinate(coordSteps, uuid)
Bases: object

A coordinate that fully defines a position within a tree of steps.

Parameters

• coordSteps (Sequence[Tuple[int, int]]) – A sequence of tuples of the form (stepId,
stepIteration) where stepId is the id number of the step being referred to. If the step is an
iterable step (multiple position, timeseries, etc.) then stepIteration should indicate the itera-
tion number, otherwise it should be None.

• uuid (str) – A universally unique ID string associated with the run of the sequencer that
this coordinate is associated with.

getStepIteration(step)

Parameters step (Union[int, SequencerStep]) – May be the ID number of the step or a
reference to the actual step.

Return type Optional[int]

Returns The iteration of Step that this coordinate corresponds to. If the step is not an iterable
step then None will be returned.

isSubPathOf(other)
Check if self is a parent path of the item coordinate

2.3. pwspy.utility 57

pwspy Documentation, Release 0.2.14

pwspy.utility.acquisition.SequencerCoordinateRange

class pwspy.utility.acquisition.SequencerCoordinateRange(coordSteps)
Bases: object

A coordinate that can have multiple iterations selected at once.

Parameters coordSteps (Sequence[Tuple[int, Optional[Sequence[int]]]]) – A sequence of
tuples where each tuple represents an acceptable coordinate range for each step in the tree path.
Tuple is of the form (ID, iterations) where ID is an integer referring to the id number of the step
and iterations indicates the iterations of that step that are considered in range. iterations can be
None or a sequence of ints that are considered in range. If iterations is `None then all iterations
are considered in range. None is also the only acceptable value for steps which do not iterate.

setAcceptedIterations(stepId, iterations)
Sets the acceptable iterations for the step associated with stepId

Parameters

• stepId (int) – The id of the step you want to adjust the iteration range for

• iterations (Optional[Sequence[int]]) – A sequence if iteration numbers to include.
If None then all iterations are accepted.

pwspy.utility.acquisition.SequencerStep

class pwspy.utility.acquisition.SequencerStep(id, settings, stepType, children=None)
Bases: pwspy.utility.acquisition._treeItem.TreeItem

Implementation of a TreeItem for representing a sequencer step.

Parameters

• id (int) – The unique integer assigned to this step by the acquisition software

• settings (dict) – The settings for this step. Saved as JSON in the sequence file.

• stepType (str) – Indicates what type of step this is. E.g. acquisition, time-series, focus
lock, etc.

• children (Optional[List[SequencerStep]]) – A list of steps which are direct children
of this step.

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

58 Chapter 2. API

pwspy Documentation, Release 0.2.14

Return type None

row()
Return which row we are with respect to the parent.

Return type int

pwspy.utility.acquisition.IterableSequencerStep

class pwspy.utility.acquisition.IterableSequencerStep(*args, **kwargs)
Bases: pwspy.utility.acquisition.steps.ContainerStep

A base-class for steps which are iterable. Despite only being a single step they run multiple times in an acquisition.
This add some complications as we want to keep track of which iteration the sub-steps of this belong to.

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

abstract getIterationName(iteration)
Return the name associated with iteration E.G. for a multiple-positions step this will be the name assigned
to the position in the position list. :type iteration: int :param iteration: The iteeration number we are
interested in.

Returns: A name for the requested iteration.

Return type str

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

Return type None

row()
Return which row we are with respect to the parent.

Return type int

abstract stepIterations()
Return the total number of iterations of this step.

2.3. pwspy.utility 59

pwspy Documentation, Release 0.2.14

pwspy.utility.acquisition.ZStackStep

class pwspy.utility.acquisition.ZStackStep(*args, **kwargs)
Bases: pwspy.utility.acquisition.steps.IterableSequencerStep

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

getIterationName(iteration)
Return the name associated with iteration E.G. for a multiple-positions step this will be the name assigned
to the position in the position list. :type iteration: int :param iteration: The iteeration number we are
interested in.

Returns: A name for the requested iteration.

Return type str

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

Return type None

row()
Return which row we are with respect to the parent.

Return type int

stepIterations()
Return the total number of iterations of this step.

pwspy.utility.acquisition.TimeStep

class pwspy.utility.acquisition.TimeStep(*args, **kwargs)
Bases: pwspy.utility.acquisition.steps.IterableSequencerStep

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

getIterationName(iteration)
Return the name associated with iteration E.G. for a multiple-positions step this will be the name assigned
to the position in the position list. :type iteration: int :param iteration: The iteeration number we are
interested in.

Returns: A name for the requested iteration.

Return type str

60 Chapter 2. API

pwspy Documentation, Release 0.2.14

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

Return type None

row()
Return which row we are with respect to the parent.

Return type int

stepIterations()
Return the total number of iterations of this step.

pwspy.utility.acquisition.PositionsStep

class pwspy.utility.acquisition.PositionsStep(*args, **kwargs)
Bases: pwspy.utility.acquisition.steps.IterableSequencerStep

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

getIterationName(iteration)
Return the name associated with iteration E.G. for a multiple-positions step this will be the name assigned
to the position in the position list. :type iteration: int :param iteration: The iteeration number we are
interested in.

Returns: A name for the requested iteration.

Return type str

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

Return type None

row()
Return which row we are with respect to the parent.

2.3. pwspy.utility 61

pwspy Documentation, Release 0.2.14

Return type int

stepIterations()
Return the total number of iterations of this step.

pwspy.utility.acquisition.ContainerStep

class pwspy.utility.acquisition.ContainerStep(id, settings, stepType, children=None)
Bases: pwspy.utility.acquisition.steps.SequencerStep

A class for steps which can contain other steps within it.

getCoordinate()
Returns a sequencer coordinate range that points to this steps location in the tree of steps.

Return type SequencerCoordinateRange

getTreePath()
Return a list of steps starting with the root step and ending with this step.

Return type Tuple[TreeItem]

static hook(dct)
This method defines how the JSON library should translate from JSON to one of these objects. :type dct:
dict :param dct: The dict representing the raw representation of the JSON

iterateChildren()
Recursively iterate through all children of this step

printSubTree(_indent=0)
Print out this step and all sub-steps in a human-readable format.

Return type None

row()
Return which row we are with respect to the parent.

Return type int

Inheritance

ContainerStep IterableSequencerStepSequencerStep

PositionsStep

TimeStep

ZStackStep

RuntimeSequenceSettings

SequenceAcquisition

SequencerCoordinate

SequencerCoordinateRange

TreeItem

62 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.utility.DConversion

Classes

This class is used to connect to the MATLAB Sigma to D conversion library.

S2DMatlabBridge(s2dPath) Opens a MATLAB process to run the Sigma2D conver-
sion code.

pwspy.utility.DConversion.S2DMatlabBridge

class pwspy.utility.DConversion.S2DMatlabBridge(s2dPath)
Bases: object

Opens a MATLAB process to run the Sigma2D conversion code. You must have the MATLAB engine for Python
installed in your Python environment.

Parameters s2dPath (str) – The file path to the SigmaConversion MATLAB package.

SigmaToD_AllInputs(sigmaIn, system_config, Nf, thickIn)
Run the complete sigma to D conversion function.

Parameters

• sigmaIn (Union[Sequence[float], float]) – The sigma values you want to convert.

• system_config (ForwardRef) – The SystemConfiguration object to use.

• Nf (float) – The genomic length of a packing domain.

• thickIn (float) – The expected thickness of the sample.

Returns This is analogous to D_b in Aya’s paper. The model parameter. dCorrected: This is
the true D. This is usually what we care about. Nf_expected: The genomic length we expect
based on D and the calculated lMax. lmax_corrected: Calculation of LMax from Nf and Db
based on eqn. 2.

Return type dOut

close()
Close the MATLAB engine. This may not be necessary as the engine will be automatically closed when
Python shuts down.

createRIDefinitionFromGladstoneDale(mediaRI, CVC)
Create an S2D.RIDefinition object from the GladstoneDale equation.

Parameters

• mediaRI (float) – The refractive index of the media that the chromatin is immersed in.

• CVC (float) – The CVC, also referred to as Phi. The ratio of Chromatin Volume : Total
Volume, kind of like density.

Return type ForwardRef

Returns A S2D.RIDefinition object.

createSystemConfiguration(ri_def, na_i, na_c, center_lambda, oil_immersion, cell_glass_interface)
Create a system configuration object. This object contains all information about the microscope and sample
refractive indices.

2.3. pwspy.utility 63

pwspy Documentation, Release 0.2.14

Parameters

• ri_def (ForwardRef) – An RI definition object

• na_i (float) – The illumination NA of the objective.

• na_c (float) – The collection NA of the objective.

• center_lambda (float) – The center wavelength of illumination. This should be the
center in K-space. So, the wavelength of the center wavenumber.

• oil_immersion (bool) – If True then the objective is treated as though it is immersed in
RI_glass. If False it is treated as though it is immersed in RI_media.

• cell_glass_interface (bool) – If True then the cell/glass interface is treated as the
reference reflection of the configuration. If False then the cell/media interface is treated as
the reference reflection.

Return type ForwardRef

Returns A S2D.SystemConfiguration MATLAB object.

pwspy.utility.fileIO

Functions for quickly loading files using parallel processing.

Functions

loadAndProcess(fileFrame[, processorFunc, ...]) DEPRECATED! This over-complicated function should
be replaced with usage of processParallel.

processParallel(fileFrame, processorFunc[, ...]) A convenience function to process the rows of a pandas
DataFrame in parallel

pwspy.utility.fileIO.loadAndProcess

pwspy.utility.fileIO.loadAndProcess(fileFrame, processorFunc=None, parallel=None, procArgs=None,
initializer=None, initArgs=None)

DEPRECATED! This over-complicated function should be replaced with usage of processParallel. A convenient
function to load a series of Data Cubes from a list or dictionary of file paths.

Parameters

• fileFrame – A dataframe containing a column of PwsCube file paths titled ‘cube’ and other
columns to act as specifiers for each cube. If no specifiers are used this can just be a list of
file paths.

• processorFunc – A function that each loaded cell should be passed to. The first argument
of processorFunc should be the loaded PwsCube. Additional arguments can be passed to
processorFunc using the procArgs variable.

• parallel – default is False. If True then the loading and processing will be performed in
parallel on multiple cores, otherwise it will be done using multithreading on a single core.
Setting this to true can result if big speedups if the time to run processorFunc is greater than
the time to load an PwsCube from file.

• procArgs – Optional arguments to pass to processorFunc

64 Chapter 2. API

pwspy Documentation, Release 0.2.14

• initializer – A function that is run once at the beginning of each spawned process. Can
be used for copying shared memory.

• initArgs – A tuple of arguments to pass to the initializer function.

Returns

• An object of the same form as fileFrame except the PwsCube file paths have been replaced
by PwsCube Object.

• If using processorFunc the return values from processorFunc will be returned rather than
PwsCube Objects.

pwspy.utility.fileIO.processParallel

pwspy.utility.fileIO.processParallel(fileFrame, processorFunc, initializer=None, initArgs=None,
procArgs=None, numProcesses=None)

A convenience function to process the rows of a pandas DataFrame in parallel

Parameters

• fileFrame (DataFrame) – A dataframe. Each row of the frame will be passed as the first
argument to the processorFunc.

• processorFunc (Callable[[], Any]) – A function that each row number and row of the
fileFrame should be passed to as the first and second argument respectively. Additional ar-
guments can be passed to processorFunc using the procArgs variable. The function should
return the value which you want included in the return of processParrallel.

• procArgs (Optional[Tuple]) – Optional arguments to pass to processorFunc

• initializer (Optional[Callable]) – A function that is run once at the beginning of each
spawned process. Can be used for copying shared memory.

• initArgs (Optional[Tuple]) – A tuple of arguments to pass to the initializer function.

Returns

Return type List containing the results of each execution of processorFunc.

pwspy.utility.fluorescence

Functions related to fluorescent images.

Functions

updateFolderStructure(rootDirectory, rotate, ...) Used to translate old fluorescence images to the new file
organization that is recognized by the code.

2.3. pwspy.utility 65

pwspy Documentation, Release 0.2.14

pwspy.utility.fluorescence.updateFolderStructure

pwspy.utility.fluorescence.updateFolderStructure(rootDirectory, rotate, flipX, flipY)
Used to translate old fluorescence images to the new file organization that is recognized by the code.

Parameters

• rootDirectory (str) – The top level directory containing fluorescence images that were
saved in the old FL_Cell{X} folder format

• rotate (int) – The number of times that the images should be rotated clockwise to match
up with the PWS images they go with

• flipX (bool) – Should the images be mirrored over the X-axis after being rotated?

• flipY (bool) – Should the images be mirrored over the Y-axis after being rotated?

pwspy.utility.machineVision

Useful functions for processing images. Currently its contents are focused on image stabilization.

Functions

to8bit(arr) Converts boolean or float type numpy arrays to 8bit and
scales the data to span from 0 to 255.

SIFTRegisterTransform(reference, other[, ...]) Given a 2D reference image and a list of other images
of the same scene but shifted a bit this function will
use OpenCV to calculate the transform from each of the
other images to the reference.

ORBRegisterTransform(reference, other[, ...]) Given a 2D reference image and a list of other images
of the same scene but shifted a bit this function will
use OpenCV to calculate the transform from each of the
other images to the reference.

edgeDetectRegisterTranslation(reference, other) This function is used to find the relative translation be-
tween a reference image and a list of other similar im-
ages.

pwspy.utility.machineVision.to8bit

pwspy.utility.machineVision.to8bit(arr)
Converts boolean or float type numpy arrays to 8bit and scales the data to span from 0 to 255. Used for many
OpenCV functions.

Parameters arr (ndarray) – The input array

Return type ndarray

Returns The output array of dtype numpy.uint8

66 Chapter 2. API

pwspy Documentation, Release 0.2.14

pwspy.utility.machineVision.SIFTRegisterTransform

pwspy.utility.machineVision.SIFTRegisterTransform(reference, other, mask=None, debugPlots=False)
Given a 2D reference image and a list of other images of the same scene but shifted a bit this function will use
OpenCV to calculate the transform from each of the other images to the reference. The transforms can be inverted
using cv2.invertAffineTransform(). It will return a list of transforms. Each transform is a 2x3 array in the form
returned by opencv.estimateAffinePartial2d(). a boolean mask can be used to select which areas will be searched
for features to be used in calculating the transform. This seems to work much better for normalized images. This
code is basically a copy of this example, it can probably be improved upon: https://docs.opencv.org/3.0-beta/
doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html

Parameters

• reference (np.ndarray) – The 2d reference image.

• other (Iterable[np.ndarray]) – An iterable containing the images that you want to
calculate the translations for.

• mask (np.ndarray) – A boolean array indicating which parts of the reference image should
be analyzed. If None then the whole image will be used.

• debugPlots (bool) – Indicates if extra plots should be openend showing the process of the
function.

Returns

A tuple containing: List[np.ndarray]: Returns a list of transforms. Each transform is a 2x3
array in the form returned by opencv.estimateAffinePartial2d(). Note that even though they
are returned as affine transforms they will only contain translation information, no scaling,
shear, or rotation.

ArtistAnimation: A reference the animation used to diplay the results of the function.

Return type tuple

pwspy.utility.machineVision.ORBRegisterTransform

pwspy.utility.machineVision.ORBRegisterTransform(reference, other, mask=None, debugPlots=False)
Given a 2D reference image and a list of other images of the same scene but shifted a bit this function will use
OpenCV to calculate the transform from each of the other images to the reference. The transforms can be inverted
using cv2.invertAffineTransform(). It will return a list of transforms. Each transform is a 2x3 array in the form
returned by opencv.estimateAffinePartial2d(). a boolean mask can be used to select which areas will be searched
for features to be used in calculating the transform.

Parameters

• reference (np.ndarray) – The 2d reference image.

• other (Iterable[np.ndarray]) – An iterable containing the images that you want to
calculate the translations for.

• mask (np.ndarray) – A boolean array indicating which parts of the reference image should
be analyzed. If None then the whole image will be used.

• debugPlots (bool) – Indicates if extra plots should be openend showing the process of the
function.

Returns

2.3. pwspy.utility 67

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html

pwspy Documentation, Release 0.2.14

A tuple containing: List[np.ndarray]: Returns a list of transforms. Each transform is a 2x3
array in the form returned by opencv.estimateAffinePartial2d(). Note that even though they
are returned as affine transforms they will only contain translation information, no scaling,
shear, or rotation.

ArtistAnimation: A reference the animation used to diplay the results of the function.

Return type tuple

pwspy.utility.machineVision.edgeDetectRegisterTranslation

pwspy.utility.machineVision.edgeDetectRegisterTranslation(reference, other, mask=None,
debugPlots=False, sigma=3)

This function is used to find the relative translation between a reference image and a list of other similar images.
Unlike SIFRegisterTransforms this function will not work for images that are rotated relative to the reference.
However, it does provide more robust performance for images that do not look identical.

Parameters

• reference (np.ndarray) – The 2d reference image.

• other (Iterable[np.ndarray]) – An iterable containing the images that you want to
calculate the translations for.

• mask (np.ndarray) – A boolean array indicating which parts of the reference image should
be analyzed. If None then the whole image will be used.

• debugPlots (bool) – Indicates if extra plots should be openend showing the process of the
function.

• sigma (float) – this parameter is passed to skimage.feature.canny to detect edges.

Returns

A tuple containing: list[np.ndarray]: Returns a list of transforms. Each transform is a 2x3 array
in the form returned by opencv.estimateAffinePartial2d(). Note that even though they are
returned as affine transforms they will only contain translation information, no scaling, shear,
or rotation.

list: A list of references to the plotting widgets used to display the results of the function.

Return type tuple

pwspy.utility.micromanager

Objects useful for dealing with files saved by Micro-Manager. https://micro-manager.org/

Classes

Image(directory) Represents a multi-file Tiff image saved by Micro-
Manager

Position1d(z[, stageName, numAxes]) A 1D position usually describing the position of a Z-axis
translation stage.

Position2d(x, y[, stageName, numAxes]) Represents a 2D position for a single xy stage in micro-
manager.

continues on next page

68 Chapter 2. API

https://micro-manager.org/

pwspy Documentation, Release 0.2.14

Table 18 – continued from previous page
PositionList(positions) Represents a micromanager positionList.
Property(value[, pType]) Represents a single property from a micromanager Prop-

ertyMap
PropertyMap(properties) Represents a propertyMap from micromanager.
MultiStagePosition(label, defaultXYStage, ...) Mirrors the class of the same name from Micro-

Manager.

pwspy.utility.micromanager.Image

class pwspy.utility.micromanager.Image(directory)
Bases: object

Represents a multi-file Tiff image saved by Micro-Manager

Parameters directory (str) – The file path to the folder containing the Micro-Manager TIFF files.

pwspy.utility.micromanager.Position1d

class pwspy.utility.micromanager.Position1d(z, stageName='', numAxes=1)
Bases: object

A 1D position usually describing the position of a Z-axis translation stage.

z
The position

Type float

zStage
Then name of the translation stage

pwspy.utility.micromanager.Position2d

class pwspy.utility.micromanager.Position2d(x, y, stageName='', numAxes=2)
Bases: object

Represents a 2D position for a single xy stage in micromanager.

x
The x position

Type float

y
The y position

Type float

xyStage
The name of the 2 dimensional translation stage

2.3. pwspy.utility 69

pwspy Documentation, Release 0.2.14

pwspy.utility.micromanager.PositionList

class pwspy.utility.micromanager.PositionList(positions)
Bases: object

Represents a micromanager positionList. can be loaded from and saved to a micromanager .pos file.

Parameters positions (List[MultiStagePosition]) – A list of MultiStagePosition objects

positions
A list of MultiStagePosition objects

applyAffineTransform(t)
Given an affine transformation array this method will transform all positions in this position list. :type t:
ndarray :param t: A 2x3 array representing the partial affine transform (rotation, scaling, and translation,
but no skew) :type t: np.ndarray

classmethod fromNanoMatFile(path, xyStageName)
Load an instance of the PositionList from a file saved by NC MATLAB acquisition software.

Parameters

• path (str) – The file path to the .mat file.

• xyStageName (str) – To adapt the MATLAB file format to the Micro-Manager we need
to manually supply a name for the

• stage (XY) –

Returns A new instance of PositionList

static fromPropertyMap(pmap)
Attempt to load a PositionList from a PropertyMap. May throw an exception.

Return type PositionList

getAffineTransform(otherList)
Calculate the partial affine transformation between this position list and another position list. Both position
lists must have the same length

Parameters otherList (PositionList) – A position list of the same length as this position
list. Each position is assumed to correspond to the position of the same index in this list.

Returns A 2x3 array representing the partial affine transform (rotation, scaling, and translation,
but no skew)

Return type np.ndarray

Examples

a = PositionList.fromNanoMatFile(r’F:/Data/AirDryingSystemComparison/NanoPreDry/corners/positions.mat’,
“TIXYDRIVE”) b = PositionList.fromNanoMatFile(r’F:/Data/AirDryingSystemComparison/NanoPostDry/corners/positions.mat’,”TIXYDRIVE”)
t = a.getAffineTransform(b) origPos = PositionList.fromNanoMatFile(r’F:/Data/AirDryingSystemComparison/NanoPreDry/0_8NA/position_list1.mat’,”TIXYDRIVE”)
newPos = origPos.applyAffineTransform(t)

mirrorX()
Invert all x coordinates

Return type PositionList

Returns A reference to this object.

70 Chapter 2. API

pwspy Documentation, Release 0.2.14

mirrorY()
Invert all y coordinates

Return type PositionList

Returns A reference to this object.

plot(fig, ax)
Open a matplotlib plot showing the positions contained in this list.

renameStage(label)
Change the name of the xy stage.

Parameters label – The new name for the xy Stage

Return type PositionList

Returns A reference to this object

toNanoMatFile(path)
Save this object to a .mat file in the format saved by NC MATLAB acquistion software.

Parameters path (str) – The file path for the new .mat file.

toPropertyMap()
Returns the position list as a PropertyMap that is formatted just like a PropertyMap from Micro-Manager.

Return type PropertyMap

pwspy.utility.micromanager.Property

class pwspy.utility.micromanager.Property(value, pType=None)
Bases: pwspy.utility.micromanager.PropertyMap._JsonAble

Represents a single property from a micromanager PropertyMap

pType
The type of the property. may be ‘STRING’, ‘DOUBLE’, or ‘INTEGER’

Type str

value
The value of the propoerty. Should match the type given in pType

Type Union[str, int, float, List[Union[str, int, float]]]

encode()
Convert this object to a PropertyMap dictionary.

Return type dict

static hook(d)
Check if a dictionary represents an instance of this class and return a new instance. If this dict does not
match the correct pattern then just return the original dict.

2.3. pwspy.utility 71

pwspy Documentation, Release 0.2.14

pwspy.utility.micromanager.PropertyMap

class pwspy.utility.micromanager.PropertyMap(properties)
Bases: pwspy.utility.micromanager.PropertyMap._JsonAble

Represents a propertyMap from micromanager. basically a list of properties.

properties
A list of properties

encode()
This method should convert the property map class to a dictionary for jsonization

Return type dict

static hook(d)
This function should try to identify if the provided JSON object (int, float, string, list, dict) represents an
instance of this Property map class. If so then generate the class, otherwire return the input value unchanged.

pwspy.utility.micromanager.MultiStagePosition

class pwspy.utility.micromanager.MultiStagePosition(label, defaultXYStage, defaultZStage,
stagePositions, gridRow=0, gridCol=0)

Bases: object

Mirrors the class of the same name from Micro-Manager. Can contain multiple Positon1d or Position2d objects.
Ideal for a system with multiple translation stages. It is assumed that there is only a single 2D stage and a single
1D stage.

label
A name for the position

Type str

defaultXYStage
The name of the 2D stage

Type str

defaultZStage
The name of the 1D stage

Type str

stagePositions
A list of Position1d and Position2D objects, usually just one of each.

Type List[Union[pwspy.utility.micromanager.positions.Position1d,
pwspy.utility.micromanager.positions.Position2d]]

copy()
Creates a copy fo the object

Return type MultiStagePosition

Returns A new MultiStagePosition object.

getXYPosition()
Return the first Position2d saved in the positions list

getZPosition()
Return the first Position1d saved in the positions` list. Returns None if no position is found.

72 Chapter 2. API

pwspy Documentation, Release 0.2.14

renameXYStage(label)
Change the name of the xy stage.

Parameters label (str) – The new name for the xy Stage

pwspy.utility.misc

Objects that are generally useful in python programming.

Decorators

cached_property(func) A decorator for a property that is only computed once
per instance and then replaces itself with an ordinary at-
tribute.

profileDec(filePath) A decorator to profile a function call using cProfile

pwspy.utility.misc.cached_property

class pwspy.utility.misc.cached_property(func)
Bases: object

A decorator for a property that is only computed once per instance and then replaces itself with an ordi-
nary attribute. Deleting the attribute resets the property. Source: https://github.com/bottlepy/bottle/commit/
fa7733e075da0d790d809aa3d2f53071897e6f76

pwspy.utility.misc.profileDec

pwspy.utility.misc.profileDec(filePath)
A decorator to profile a function call using cProfile

Parameters filePath (str) – cProfile will dump a log file to this location.

pwspy.utility.plotting

Image Plotting

Functions

roiColor(data, rois, vmin, vmax, scale_bg[, ...]) Given a 2D image of data this function will scale the
data, apply an exponential curve, and color the ROI re-
gions with Hue.

2.3. pwspy.utility 73

https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76
https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76

pwspy Documentation, Release 0.2.14

pwspy.utility.plotting.roiColor

pwspy.utility.plotting.roiColor(data, rois, vmin, vmax, scale_bg, hue=0, exponent=1, numScaleBarPix=0)
Given a 2D image of data this function will scale the data, apply an exponential curve, and color the ROI regions
with Hue. Used in many presentations and publications.

Parameters

• data (np.ndarray) – an MxN array of data to be imaged

• rois (List[Roi]) – a list of Roi objects. the regions inside a roiFile will be colored.

• vmin (float) – the minimum value in the data that will be set to black

• vmax (float) – the maximum value in the data that will be set to white

• scale_bg (float) – Scales the brightness of the background (non-roiFile) region.

• hue (float) – A value of 0-1 indicating the hue of the colored regions.

• exponent (float) – The exponent used to curve the color map for more pleasing results.

• numScaleBarPix (float) – The length of the scale bar in number of pixels.

Returns MxNx3 RGB array of the image

Return type np.ndarray

pwspy.utility.reflection

A package containing functionality useful for calculation reflections.

Subpackages

extraReflectance A collection of functions dedicated to the purpose of
generating Extra Reflectance calibrations from images
of materials with known reflectances (e.g.

multilayerReflectanceEngine Using the wave transfer matrix formalism from chapter
7 of Saleh and Teich Fundamentals of Photonics, this
script calculates the reflectance of a multilayer dielectric.

reflectanceHelper Provides a number of functions for calculating simple
reflections based on known refractive indices

pwspy.utility.reflection.extraReflectance

A collection of functions dedicated to the purpose of generating Extra Reflectance calibrations from images of materials
with known reflectances (e.g. air/glass interface, water/glass interface.)

By calculating the “extra reflectance” of a microscope system we can come up with a subtraction from our raw data
that will make our ratiometric measurements proportional to the actual sample reflectance.

These functions are relied on heavily in “ERCreator” app found in pwspy_gui.ExtraReflectanceCreator.

74 Chapter 2. API

pwspy Documentation, Release 0.2.14

Functions

getTheoreticalReflectances(materials, ...) Generate a dictionary containing a Pandas Series of the
material-glass reflectance for each material in materials.

generateMaterialCombos(materials[, ...]) Given a list of materials, this function returns a list of all
possible material combo tuples.

getAllCubeCombos(matCombos, cubeDict) Given a list of material combo tuples, return a dictionary
whose keys are the material combo tuples and whose val-
ues are lists of CubeCombos.

plotExtraReflection(images, theoryR, matCom-
bos)

Generate a variety of plots displaying information about
the extra reflectance calculation.

generateRExtraCubes(allCombos, theoryR, ...) Generate a series of extra reflectance cubes based on the
input data.

pwspy.utility.reflection.extraReflectance.getTheoreticalReflectances

pwspy.utility.reflection.extraReflectance.getTheoreticalReflectances(materials, wavelengths,
numericalAperture)

Generate a dictionary containing a Pandas Series of the material-glass reflectance for each material in materials.

Parameters

• materials (Set[Material]) – The set of materials that you want to retrieve the theoretical
reflectance for.

• wavelengths (Tuple[float]) – The wavelengths that you want the reflectances calculated
at.

• numericalAperture (float) – The numerical aperture that the reflectance should be cal-
culated at.

Return type Dict[Material, Series]

Returns A dictionary of the reflectances for each material. The material serves as the dictionary key.

pwspy.utility.reflection.extraReflectance.generateMaterialCombos

pwspy.utility.reflection.extraReflectance.generateMaterialCombos(materials,
excludedCombos=None)

Given a list of materials, this function returns a list of all possible material combo tuples.

Parameters

• materials (Iterable[Material]) – The list of materials that you want to generate every
possible combo of.

• excludedCombos (Optional[Iterable[Tuple[Material, Material]]]) – Combina-
tions of materials that you don’t want included in the combinations.

Return type List[Tuple[Material, Material]]

Returns A list of Material combinations.

2.3. pwspy.utility 75

pwspy Documentation, Release 0.2.14

pwspy.utility.reflection.extraReflectance.getAllCubeCombos

pwspy.utility.reflection.extraReflectance.getAllCubeCombos(matCombos, cubeDict)
Given a list of material combo tuples, return a dictionary whose keys are the material combo tuples and whose
values are lists of CubeCombos.

Parameters

• matCombos (Iterable[Tuple[Material, Material]]) – A list of material combinations,
most likely generated by generateMaterialCombos

• cubeDict (Dict[Material, List[PwsCube]]) – An dictionary containing lists of a Pws-
Cube measuremnts keyed by the material they were measured at.

Return type Dict[Tuple[Material, Material], List[CubeCombo]]

Returns A dictionary with a key for each material combination. Each value is a list of all the Cube-
Combo`s extracted from `cubes.

pwspy.utility.reflection.extraReflectance.plotExtraReflection

pwspy.utility.reflection.extraReflectance.plotExtraReflection(images, theoryR, matCombos,
mask=None)

Generate a variety of plots displaying information about the extra reflectance calculation.

Parameters

• images (Dict[str, Dict[Material, List[PwsCube]]]) – A dictionary where the keys are
strings representing some configuration of the system and the values are dictionaries where
the keys are a Material and the values are lists of the PwsCube that were measured at the
corresponding glass-{material} interface and configuration indicated by the dictionary keys.

• theoryR (Dict[Material, Series]) – A dictionary where the key is a Material and the
value is a Pandas ‘Series’ giving the reflectance for a glass-{material} reflection over a range
of wavelengths. The index of the series should be the wavelengths.

• matCombos (List[Tuple[Material, Material]]) – A list of the various material combi-
nations that should be evaluated.

• mask (Optional[Roi]) – An ROI indicating the region of the images that should be included
in the evaluation.

Return type List[Figure]

Returns A list of matplotlib figures resulting from this calculation.

pwspy.utility.reflection.extraReflectance.generateRExtraCubes

pwspy.utility.reflection.extraReflectance.generateRExtraCubes(allCombos, theoryR,
numericalAperture)

Generate a series of extra reflectance cubes based on the input data.

Parameters

• allCombos (Dict[Tuple[Material, Material], List[CubeCombo]]) – a dict of lists
CubeCombos, each keyed by a 2-tuple of Materials.

• theoryR (Dict[Material, Series]) – the theoretically predicted reflectance for each ma-
terial.

76 Chapter 2. API

pwspy Documentation, Release 0.2.14

• numericalAperture (float) – The numerical aperture that the PwsCubes were imaged at.
The theoryR reflectances should have also been calculated at this NA

Return type Tuple[ExtraReflectanceCube, Dict[Union[str, Tuple[Material, Material]],
ndarray]]

Returns

An ExtraReflectanceCube object containing data from the weighted average of all measurements.
A dictionary where the keys are material combos and the values are tuples of the weighted-
Mean and the weight arrays.

Classes

pwspy.utility.reflection.multilayerReflectanceEngine

Using the wave transfer matrix formalism from chapter 7 of Saleh and Teich Fundamentals of Photonics, this
script calculates the reflectance of a multilayer dielectric. http://www.phys.ubbcluj.ro/~emil.vinteler/nanofotonica/
TemeControl_FCMD014_Vinteler.pdf https://en.wikipedia.org/wiki/Transfer-matrix_method_(optics)

m is the final transfer matrix. It should be made by multiplying the matrices representing each element of the system.
If the transmitted light is considered to be propagating from left to right then the matrices should be in multiplied in
reverse, from right to left.

Classes

Polarization(value) An enumeration of the possible polarization types.
Layer(mat, d[, name]) This represents a layer with a thickness and an index of

refraction.
Stack(wavelengths[, elements]) Represents a stack of 1d homogenous films.
NonPolarizedStack(wavelengths[, elements]) Represents a stack of 1d homogenous films.

pwspy.utility.reflection.multilayerReflectanceEngine.Polarization

class pwspy.utility.reflection.multilayerReflectanceEngine.Polarization(value)
Bases: enum.Enum

An enumeration of the possible polarization types.

pwspy.utility.reflection.multilayerReflectanceEngine.Layer

class pwspy.utility.reflection.multilayerReflectanceEngine.Layer(mat, d, name=None)
Bases: object

This represents a layer with a thickness and an index of refraction. Note: This whole system only supports
lossless media, we only use the real part of the index of refraction.

Parameters

• mat (Union[Number, Series, Material]) – This can either be a number or series of num-
bers representing the refractive index at different wavelengths or it can be a Material in which
case the refractive index will be automatically calculated.

2.3. pwspy.utility 77

http://www.phys.ubbcluj.ro/~emil.vinteler/nanofotonica/TemeControl_FCMD014_Vinteler.pdf
http://www.phys.ubbcluj.ro/~emil.vinteler/nanofotonica/TemeControl_FCMD014_Vinteler.pdf
https://en.wikipedia.org/wiki/Transfer-matrix_method_(optics

pwspy Documentation, Release 0.2.14

• d (float) – The thickness of the layer. The units that thicknesses and wavelengths are spec-
ified in must match.

• name (Optional[str]) – An optional name which will be dislayed if the layer is plotted

getRefractiveIndex(wavelengths)
Get the refractive index of the layer.

Parameters wavelengths (ndarray) – The wavelengths to calculate the refractive index at.

Return type Series

Returns The refractive index.

pwspy.utility.reflection.multilayerReflectanceEngine.Stack

class pwspy.utility.reflection.multilayerReflectanceEngine.Stack(wavelengths, elements=None)
Bases: pwspy.utility.reflection.multilayerReflectanceEngine.StackBase

Represents a stack of 1d homogenous films. Reflectance for the two polarizations can be calculated for a range
of numerical apertures (angles). Indices of refraction must be real (no absorption).

Parameters

• wavelengths (Union[Number, ndarray]) – The wavelengths that calculation should oper-
ate over.

• elements (Optional[List[Layer]]) – The initial layers to add to the stack.

addLayer(element)
Add a new Layer to the Stack

Parameters element (Layer) – A new layer to add.

calculateReflectance(NAs)
Given an array of numerical apertures this function returns the reflectance as a dictionary of 2d arrays.
There is one 2d array for each of the two polarizations. the dimensions of the array is (wavelengths x
NAs). The total reflectance can be calculated as the average reflectance of the two polarizations. Other
ellipsometric parameters can also be calculated.

Parameters NAs (ndarray) – The numerical apertures to calculate reflectance at.

Returns A dictionary containing a reflectance array for each of the two polarizations. The polar-
ization is the key to the dictionary. Each reflectance is a MxN array where M is the number
of wavelengths and N is the number of NAs passed to this function.

circularIntegration(NAs)
Given an array of NumericalApertures (usually from 0 to NAMax.) This function integrates the reflectance
over a disc of Numerical Apertures (Just like in a microscope the Aperture plane is a disc shape, with higher
NA being further from the center.) Ultimately the result of this integration should match the reflectance
measured with the same NA.

Parameters NAs (ndarray) – The numerical apertures to calculate reflectance at.

Return type Series

Returns A pandas Series with wavelengths as the index and reflectance as the value.

static interfaceMatrix(n1, n2, polarization, NAs)
Returns a matrix representing a dieletric interface. n1 and n2 should be a pandas Series where the values
are complex refractive index and the index of the Series is the associated wavelengths.

Parameters

78 Chapter 2. API

pwspy Documentation, Release 0.2.14

• n1 (Series) – The refractive indices on one side of the reflective interface

• n2 (Series) – The refractive indices on the other side of the reflective interface

• polarization (Polarization) – The polarization that should be used for the calculation

• NAs (ndarray) – An array of the numerical aperture values. :todo: More details would be
good

Return type ndarray

Returns A transfer matrix for the reflective interface

plot(NAs, polarization=None)
Plot various graphs of reflectance vs NA. NAs should be an array of Numerical apertures to have the re-
flectance calculated for. polarization can be specified to view the reflectance of only one polarization.

static propagationMatrix(n, d, NAs)
Returns a matrix representing the propagation of light for a distance of d. d and the wavelengths must use
the same units.

Parameters

• n (Series) – The refractive indices of the material

• d (float) – The distance of propagation.

Return type ndarray

Returns A transfer matrix for propagation through a material.

pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack

class pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack(wavelengths, el-
ements=None)

Bases: pwspy.utility.reflection.multilayerReflectanceEngine.StackBase

Represents a stack of 1d homogenous films. Reflectance can only be calculated at 0 incidence angle in which
case polarization is irrelevant. This class does not do anything that can’t be done with Stack. Indices of refraction
must be real (no absorption).

Parameters

• wavelengths (Union[Number, ndarray]) – The wavelengths that calculation should oper-
ate over.

• elements (Optional[List[Layer]]) – The initial layers to add to the stack.

addLayer(element)
Add a new Layer to the Stack

Parameters element (Layer) – A new layer to add.

calculateReflectance()
Calculate the reflectance for this Stack.

Return type ndarray

Returns The reflectance.

static interfaceMatrix(n1, n2)
Generate a matrix representing the interface between two dielectrics with indices n1 on the left and n2 on
the right. Actually the order of terms does not appear to matter. This does not account for polarization or
incidence angles other than 0 degrees.

2.3. pwspy.utility 79

pwspy Documentation, Release 0.2.14

Parameters

• n1 (Series) – The refractive indices on one side of the reflective interface

• n2 (Series) – The refractive indices on the other side of the reflective interface

Return type ndarray

Returns A transfer matrix for the reflective interface

plot()
Open a Matplotlib plot of the stack.

static propagationMatrix(n, d)
Returns a matrix representing the propagation of light. n should be a pandas Series where the values are
complex refractive index and the index fo the Series is the associated wavelengths. with wavelength. for a
distance of d. d and the wavelengths must use the same units.

Parameters

• n (Series) – The refractive indices of the material

• d (float) – The distance of propagation.

Return type ndarray

Returns A transfer matrix for propagation through a material.

pwspy.utility.reflection.reflectanceHelper

Provides a number of functions for calculating simple reflections based on known refractive indices

Functions

getReflectance(mat1, mat2[, wavelengths, NA]) Given the names of two interfaces this provides the re-
flectance in units of percent.

getRefractiveIndex(mat[, wavelengths]) Get the spectrally dependent refractive index of a mate-
rial.

pwspy.utility.reflection.reflectanceHelper.getReflectance

pwspy.utility.reflection.reflectanceHelper.getReflectance(mat1, mat2, wavelengths=None, NA=0)
Given the names of two interfaces this provides the reflectance in units of percent. If given a series as wavelengths
the data will be interpolated and reindexed to match the wavelengths.

Parameters

• mat1 (Union[Number, Series, Material]) – The first material comprising the reflective
interface. This can either be a number or series of numbers representing the refractive index
at different wavelengths or it can be a Material in which case the refractive index will be
automatically calculated.

• mat2 (Union[Number, Series, Material]) – The second material comprising the reflective
interface. This can either be a number or series of numbers representing the refractive index
at different wavelengths or it can be a Material in which case the refractive index will be
automatically calculated.

80 Chapter 2. API

pwspy Documentation, Release 0.2.14

• wavelengths (Union[ndarray, List, Tuple, None]) – The wavelengths to calculate the
reflectance at.

• NA (float) – The numerical aperture of the system. Reflectance will be calculated by radially
integrating results over the range of angles present within the numerical aperture. If left as
None the result is calculated for light with a 0 degree angle of incidence.

Return type Series

Returns The percentage reflectance. The index of the pandas Series is the wavelengths.

pwspy.utility.reflection.reflectanceHelper.getRefractiveIndex

pwspy.utility.reflection.reflectanceHelper.getRefractiveIndex(mat, wavelengths=None)
Get the spectrally dependent refractive index of a material.

Parameters

• mat (Material) – The material the retrieve the refractive index of.

• wavelengths (Optional[Iterable[float]]) – The wavelengths that the refractive index
should be calculated at. If left as None then the wavelengths used will be determined by the
original file that the data was pulled from.

Return type Series

Returns The refractive index. The index of the pandas series is the wavelengths.

Classes

Material(value) An enumeration class containing items for the various
materials that we can calculate reflectance for.

pwspy.utility.reflection.Material

class pwspy.utility.reflection.Material(value)
Bases: enum.Enum

An enumeration class containing items for the various materials that we can calculate reflectance for.

2.3. pwspy.utility 81

pwspy Documentation, Release 0.2.14

82 Chapter 2. API

CHAPTER

THREE

EXAMPLES

3.1 Examples

3.1.1 Performing FFT on the raw data to get a view of the estimated depth of cell
features

1 # -*- coding: utf-8 -*-
2 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
3 #
4 # This file is part of PWSpy.
5 #
6 # PWSpy is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.

10 #
11 # PWSpy is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
18

19 """
20 Load the OPD from a previously saved analysis result and plot it using a special multi-

→˓dimensional plotting widget.
21

22 @author: Nick Anthony
23 """
24

25 import pwspy.dataTypes as pwsdt
26 from mpl_qt_viz.visualizers import PlotNd
27 from examples import PWSImagePath
28 import matplotlib.pyplot as plt
29

30 plt.ion() # Without this we will get a crash when trying to open the PlotNd window␣
→˓because a Qt application loop must be running.

31 plt.figure()
32

(continues on next page)

83

pwspy Documentation, Release 0.2.14

(continued from previous page)

33 acquisition = pwsdt.Acquisition(PWSImagePath) # Get a reference to the top-level folder␣
→˓for the measurement.

34

35 roiSpecs = acquisition.getRois() # Get a list of the (name, number, file format) of the␣
→˓available ROIs.

36 print("ROIs:\n", roiSpecs)
37

38 analysis = acquisition.pws.loadAnalysis(acquisition.pws.getAnalyses()[0]) # Load a␣
→˓reference to an analysis file.

39 kCube = analysis.reflectance # Load the processed `reflectance` array from the analysis␣
→˓file.

40

41 opd, opdValues = kCube.getOpd(useHannWindow=False, indexOpdStop=50) # Use FFT to␣
→˓transform the reflectance array to OPD

42

43 # Scale the opdValues to give estimated depth instead of raw OPD. Factor of 2 because␣
→˓light is making a round-trip.

44 ri = 1.37 # Estimated RI of livecell chromatin
45 opdValues = opdValues / (2 * ri)
46

47 plotWindow = PlotNd(opd, names=('y', 'x', 'depth'),
48 indices=(None, None, opdValues), title="Estimated Depth")

3.1.2 Brief example of basic PWS analysis to produce Sigma, Reflectance, Ld, and
other images.

1 # -*- coding: utf-8 -*-
2 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
3 #
4 # This file is part of PWSpy.
5 #
6 # PWSpy is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.

10 #
11 # PWSpy is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
18

19 """
20 This script saves pws analysis results to the test data. This must be run before many of␣

→˓the other examples will work.
21 """
22

(continues on next page)

84 Chapter 3. Examples

pwspy Documentation, Release 0.2.14

(continued from previous page)

23 from pwspy import analysis
24 from pwspy import dataTypes as pwsdt
25 from examples import PWSExperimentPath
26

27 settings = analysis.pws.PWSAnalysisSettings.loadDefaultSettings("Recommended")
28

29 # Load our blank reference image which will be used for normalization.
30 refAcq = pwsdt.Acquisition(PWSExperimentPath / 'Cell3')
31 ref = refAcq.pws.toDataClass()
32

33 anls = analysis.pws.PWSAnalysis(settings=settings, extraReflectance=None, ref=ref) #␣
→˓Create a new analysis for the given reference image and analysis settings. The
→˓"ExtraReflection" calibration is ignored in this case.

34

35 acq = pwsdt.Acquisition(PWSExperimentPath / "Cell1") # Create an "Acquisition" object␣
→˓to handle operations for the data associated with a single acquisition

36 cube = acq.pws.toDataClass() # Request that the PWS metadata object load the full data.
37 results, warnings = anls.run(cube) # Run the pre-setup analysis on our data. Get the␣

→˓analysis results and potentially a list of warnings from the analysis.
38

39 acq.pws.saveAnalysis(results, 'myAnalysis', overwrite=True) # Save our analysis results␣
→˓to file in the default location alongside the raw data under the `analyses` folder.

40

41 loadedResults = acq.pws.loadAnalysis('myAnalysis') # This is just going to be a copy of␣
→˓`results`, loaded from file.

3.1.3 Use the compilation functionality to reduce analysis results to a table of val-
ues of average values within an ROI

1 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
2 #
3 # This file is part of PWSpy.
4 #
5 # PWSpy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
9 #

10 # PWSpy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
17

18 """
19 This script loads analysis results from a list of PWS acquisitions and uses the

→˓"PWSRoiCompiler" class to get average output
20 values within the ROIs for each acquisition. The compiled results are then placed into a␣

→˓Pandas dataframe. (continues on next page)

3.1. Examples 85

pwspy Documentation, Release 0.2.14

(continued from previous page)

21 """
22 import pandas
23 from pwspy.analysis.compilation import PWSRoiCompiler, PWSCompilerSettings
24 from examples import PWSExperimentPath
25 import pwspy.dataTypes as pwsdt
26

27 tmpList = []
28 compiler = PWSRoiCompiler(PWSCompilerSettings(reflectance=True, rms=True))
29

30 listOfAcquisitions = [pwsdt.Acquisition(i) for i in PWSExperimentPath.glob("Cell[0-9]")]
31 for acquisition in listOfAcquisitions:
32 for analysisName in acquisition.pws.getAnalyses():
33 analysisResults = acquisition.pws.loadAnalysis(analysisName)
34 for roiSpec in acquisition.getRois():
35 roiFile = acquisition.loadRoi(*roiSpec)
36 results, warnings = compiler.run(analysisResults, roiFile.getRoi())
37

38 if len(warnings) > 0:
39 print(warnings)
40

41 tmpList.append(dict(
42 acquisition=acquisition,
43 cellNumber=acquisition.getNumber(),
44 analysisResults=analysisResults,
45 rms=results.rms,
46 reflectance=results.reflectance,
47 roiNum=roiFile.number,
48 roiName=roiFile.name
49))
50

51 dataFrame = pandas.DataFrame(tmpList)
52 print(dataFrame)

3.1.4 Basic loading of ROI’s to extract data from specific regions

1 # -*- coding: utf-8 -*-
2 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
3 #
4 # This file is part of PWSpy.
5 #
6 # PWSpy is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.

10 #
11 # PWSpy is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #

(continues on next page)

86 Chapter 3. Examples

pwspy Documentation, Release 0.2.14

(continued from previous page)

16 # You should have received a copy of the GNU General Public License
17 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
18

19 """
20 Loop through all ROIs for all acquisitions in a directory and plot a histogram of the␣

→˓RMS values within the ROI.
21 """
22

23 import pwspy.dataTypes as pwsdt
24 import matplotlib.pyplot as plt
25 import pathlib
26 import numpy as np
27 from examples import PWSExperimentPath
28 plt.ion()
29

30 workingDirectory = PWSExperimentPath # The folder that all your acquisitions are saved␣
→˓under.

31 analysisName = 'script' # This will often be "p0"
32

33 def plotHist(roi, rms):
34 """
35 This function takes an ROI
36 and a 2D RMS image and plots a histogram of the RMS values inside the ROI
37 """
38 # Check input values just to be safe.
39 assert isinstance(roi, pwsdt.Roi) # Make sure roiFile variable is actually an ROI
40 assert isinstance(rms, np.ndarray) # Make sure the RMS image is an numpy array
41 assert roi.mask.shape == rms.shape # Make sure the ROI and RMS arrays have the same␣

→˓dimensions.
42

43 vals = rms[roi.mask] # A 1D array of the values inside the ROI
44 plt.hist(vals) # Plot a histogram
45

46

47 cellFolderIterator = pathlib.Path(workingDirectory).glob("Cell[0-9]") # An iterator for␣
→˓all folders that are below workingDirectory and match the "regex" pattern "Cell[0-9]"

48 for folder in cellFolderIterator:
49 acq = pwsdt.Acquisition(folder) # An object handling the contents of a single "Cell

→˓{X}" folder
50

51 try:
52 anls = acq.pws.loadAnalysis(analysisName) # Load the analysis results from file.
53 except:
54 print(f"Analysis loading failed for {acq.filePath}")
55 continue # Skip to the next loop iteration
56

57 roiSpecs = acq.getRois() # A list of the names, numbers, and fileFormats of the␣
→˓ROIs in this acquisition

58

59 for name, number, fformat in roiSpecs: # Loop through every ROI.
60 roiFile = acq.loadRoi(name, number, fformat) # Load the ROI from file.
61 plotHist(roiFile.getRoi(), anls.rms) # Use the function defined above to plot a␣

→˓histogram (continues on next page)

3.1. Examples 87

pwspy Documentation, Release 0.2.14

(continued from previous page)

3.1.5 Using a hand-drawn ROI to generate a reference pseudo-measurement

1

2 # -*- coding: utf-8 -*-
3 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
4 #
5 # This file is part of PWSpy.
6 #
7 # PWSpy is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or

10 # (at your option) any later version.
11 #
12 # PWSpy is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
16 #
17 # You should have received a copy of the GNU General Public License
18 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
19

20 """
21 This script allows the user to select a region of an PwsCube. the spectra of this
22 region is then averaged over the X and Y dimensions. This spectra is then saved
23 as a reference dataTypes with the same initial dimensions.
24 Can help to make a reference when you don't actually have one for some reason
25 """
26

27 import pwspy.dataTypes as pwsdt
28 import matplotlib.pyplot as plt
29 import numpy as np
30 from examples import PWSImagePath
31

32 plt.ion()
33 a = pwsdt.Acquisition(PWSImagePath).pws.toDataClass() # Load a measurement from file.
34

35 roi = a.selectLassoROI() # Prompt the user for a hand-drawn ROI
36 spec, std = a.getMeanSpectra(mask=roi) # Get the average spectra within the ROI
37 newData = np.zeros(a.data.shape)
38 newData[:, :, :] = spec[np.newaxis, np.newaxis, :] # Extend the averaged spectrum along␣

→˓the full dimensions of the original measurement.
39 ref = pwsdt.PwsCube(newData, a.metadata) # Create a new synthetic measurement using the␣

→˓averaged spectrum
40 plt.plot(a.wavelengths, spec)
41

88 Chapter 3. Examples

pwspy Documentation, Release 0.2.14

3.1.6 Blurring data laterally to smooth a reference image.

1 # -*- coding: utf-8 -*-
2 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
3 #
4 # This file is part of PWSpy.
5 #
6 # PWSpy is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.

10 #
11 # PWSpy is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
18

19 """
20 This script blurs an image cube in the xy direction. Allows you to turn an
21 image of cells into something that can be used as a reference image, assuming
22 most of the the FOV is glass. In reality you should just have a good reference image to␣

→˓use and not resort to something
23 like this.
24 """
25

26 import copy
27

28 import matplotlib.pyplot as plt
29 import pwspy.dataTypes as pwsdt
30 from examples import PWSImagePath
31

32 plt.ion()
33

34 acq = pwsdt.Acquisition(PWSImagePath)
35 a = acq.pws.toDataClass()
36

37 a.correctCameraEffects() # Correct for dark counts and potentially for camera␣
→˓nonlinearity using metadata stored with the original measurement.

38 a.normalizeByExposure() # Divide by exposure time to get data in units of `counts/ms`.␣
→˓This isn't strictly necessary in this case.

39

40 mirror = copy.deepcopy(a)
41 mirror.filterDust(10) # Apply a gaussian blurring with sigma=10 microns along the XY␣

→˓plane.
42

43 a.plotMean() # Plot the mean reflectance of the original
44 mirror.plotMean() # Plot the mean reflectance after filtering.
45 a.normalizeByReference(mirror) # Normalize raw by reference
46 a.plotMean() # Plot the measurement after normalization.
47 plt.figure()

(continues on next page)

3.1. Examples 89

pwspy Documentation, Release 0.2.14

(continued from previous page)

48 plt.imshow(a.data.std(axis=2)) # Plot RMS after normalization.

3.1.7 Measuring Sigma using only a limited range of the OPD signal.

1

2 # -*- coding: utf-8 -*-
3 # Copyright 2018-2021 Nick Anthony, Backman Biophotonics Lab, Northwestern University
4 #
5 # This file is part of PWSpy.
6 #
7 # PWSpy is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or

10 # (at your option) any later version.
11 #
12 # PWSpy is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
16 #
17 # You should have received a copy of the GNU General Public License
18 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
19

20 """
21 This script is based on a matlab script written by Lusik Cherkezyan for NC.
22 Nano uses this method to extract rms from phantom make from ChromEM cells embedded in␣

→˓resin.
23 The phantom has a strong thin-film spectrum. This script is meant to filter out the thin␣

→˓film components
24 of the fourier transfrom and extract RMS from what is left.
25 """
26 from pwspy.dataTypes import CameraCorrection, Acquisition, Roi, PwsCube, KCube
27 import matplotlib.pyplot as plt
28 import scipy.signal as sps
29 import os
30 import numpy as np
31

32 '''User Input'''
33 path = r'2_7_2019 11.07'
34 refName = 'Cell999' # This is an PwsCube of glass, used for normalization.
35 cellNames = ['Cell1', 'Cell2'] # , 'Cell3', 'Cell4','Cell5']
36 maskSuffix = 'resin'
37

38 # identify the depth in um to which the OPD spectra need to be integrated
39 integrationDepth = 2.0 ## in um
40 isHannWindow = True # Should Hann windowing be applied to eliminate edge artifacts?
41 subtractResinOpd = True
42 resetResinMasks = False
43 wvStart = 510 # start wavelength for poly subtraction
44 wvEnd = 690 # end wavelength for poly subtraction

(continues on next page)

90 Chapter 3. Examples

pwspy Documentation, Release 0.2.14

(continued from previous page)

45 sampleRI = 1.545 # The refractive index of the resin. This is taken from matlab code, I␣
→˓don't know if it's correct.

46 orderPolyFit = 0
47 wv_step = 2
48 correction = CameraCorrection(2000, (0.977241216, 1.73E-06, 1.70E-11))
49

50 '''************'''
51

52 b, a = sps.butter(6, 0.1 * wv_step)
53 opdIntegralEnd = integrationDepth * 2 * sampleRI # We need to convert from our desired␣

→˓depth into an opd value. There are some questions about having a 2 here but that's how␣
→˓it is in the matlab code so I'm keeping it.

54

55 ### load and save mirror or glass image cube
56 ref = PwsCube.fromMetadata(Acquisition(os.path.join(path, refName)).pws)
57 ref.correctCameraEffects(correction)
58 ref.filterDust(6, pixelSize=1)
59 ref.normalizeByExposure()
60

61 if subtractResinOpd:
62 ### load and save reference empty resin image cube
63 fig, ax = plt.subplots()
64 resinOpds = {}
65 for cellName in cellNames:
66 resin = PwsCube.fromMetadata(Acquisition(os.path.join(path, cellName)).pws)
67 resin.correctCameraEffects(correction)
68 resin.normalizeByExposure()
69 resin /= ref
70 resin = KCube.fromPwsCube(resin)
71 if resetResinMasks:
72 [resin.metadata.acquisitionDirectory.deleteRoi(name, num) for name, num,␣

→˓fformat in resin.metadata.acquisitionDirectory.getRois() if name == maskSuffix]
73 if maskSuffix in [name for name, number, fformat in resin.metadata.

→˓acquisitionDirectory.getRois()]:
74 resinRoi = resin.metadata.acquisitionDirectory.loadRoi(maskSuffix, 1)
75 else:
76 print('Select a region containing only resin.')
77 resinRoi = resin.selectLassoROI()
78 resin.metadata.acquisitionDirectory.saveRoi(maskSuffix, 1, resinRoi)
79 resin.data -= resin.data.mean(axis=2)[:, :, np.newaxis]
80 opdResin, xvals = resin.getOpd(isHannWindow, indexOpdStop=None, mask=resinRoi.

→˓mask)
81 resinOpds[cellName] = opdResin
82 ax.plot(xvals, opdResin, label=cellName)
83 ax.vlines([opdIntegralEnd], ymin=opdResin.min(), ymax=opdResin.max())
84 ax.set_xlabel('OPD')
85 ax.set_ylabel("Amplitude")
86 ax.legend()
87 plt.pause(0.2)
88

89 rmses = {} # Store the rms maps for later saving
90 for cellName in cellNames:

(continues on next page)

3.1. Examples 91

pwspy Documentation, Release 0.2.14

(continued from previous page)

91 cube = PwsCube.fromMetadata(Acquisition(os.path.join(path, cellName)).pws)
92 cube.correctCameraEffects(correction)
93 cube.normalizeByExposure()
94 cube /= ref
95 cube.data = sps.filtfilt(b, a, cube.data, axis=2)
96 cube = KCube.fromPwsCube(cube)
97

98 ## -- Polynomial Fit
99 print("Subtracting Polynomial")

100 polydata = cube.data.reshape((cube.data.shape[0] * cube.data.shape[1], cube.data.
→˓shape[2]))

101 polydata = np.rollaxis(polydata, 1) # Flatten the array to 2d and put the␣
→˓wavenumber axis first.

102 cubePoly = np.zeros(polydata.shape) # make an empty array to hold the fit values.
103 polydata = np.polyfit(cube.wavenumbers, polydata,
104 orderPolyFit) # At this point polydata goes from holding the␣

→˓cube data to holding the polynomial values for each pixel. still 2d.
105 for i in range(orderPolyFit + 1):
106 cubePoly += (np.array(cube.wavenumbers)[:, np.newaxis] ** i) * polydata[i,
107 :] # Populate␣

→˓cubePoly with the fit values.
108 cubePoly = np.moveaxis(cubePoly, 0, 1)
109 cubePoly = cubePoly.reshape(cube.data.shape) # reshape back to a cube.
110 # Remove the polynomial fit from filtered cubeCell.
111 cube.data = cube.data - cubePoly
112

113 rmsData = np.sqrt(np.mean(cube.data ** 2, axis=2)) #This can be compared to␣
→˓rmsOPDIntData, when the integralStopIdx is high and we don't do spectral subtraction␣
→˓they should be equivalent.

114

115 # Find the fft for each signal in the desired wavelength range
116 opdData, xvals = cube.getOpd(isHannWindow, None)
117

118 if subtractResinOpd:
119 opdData = opdData - resinOpds[cellName]
120

121 try:
122 integralStopIdx = np.where(xvals >= opdIntegralEnd)[0][0]
123 except IndexError: # If we get an index error here then our opdIntegralEnd is␣

→˓probably bigger than we can achieve. Just use the biggest value we have.
124 integralStopIdx = None
125 opdIntegralEnd = max(xvals)
126 print(f'Integrating to OPD {opdIntegralEnd}')
127

128 opdSquared = np.sum(opdData[:, :, :integralStopIdx] ** 2,axis=2) # Parseval's␣
→˓theorem tells us that this is equivalent to the sum of the squares of our original␣
→˓signal

129 opdSquared *= len(cube.wavenumbers) / opdData.shape[2] # If the original data and␣
→˓opd were of the same length then the above line would be correct. Since the fft has␣
→˓been upsampled. we need to normalize.

130 rmsOpdIntData = np.sqrt(opdSquared) # this should be equivalent to normal RMS if␣
→˓our stop index is high and resin subtraction is disabled.

(continues on next page)

92 Chapter 3. Examples

pwspy Documentation, Release 0.2.14

(continued from previous page)

131

132 cmap = plt.get_cmap('jet')
133 fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
134 im = axs[0].imshow(rmsData, cmap=cmap, clim=[np.percentile(rmsData, 0.5), np.

→˓percentile(rmsData, 99.5)])
135 fig.colorbar(im, ax=axs[0])
136 axs[0].set_title('RMS')
137 im = axs[1].imshow(rmsOpdIntData, cmap=cmap,
138 clim=[np.percentile(rmsOpdIntData, 0.5), np.

→˓percentile(rmsOpdIntData, 99.5)])
139 fig.colorbar(im, ax=axs[1])
140 axs[1].set_title(f'RMS from OPD below {opdIntegralEnd} after resin OPD subtraction')
141 fig.suptitle(cellName)
142 rmses[cellName] = rmsOpdIntData
143 plt.pause(0.2)
144 plt.pause(0.5)

3.1.8 Generating new position lists to enable colocalized measurements on multiple
systems.

1 # Copyright 2018-2020 Nick Anthony, Backman Biophotonics Lab, Northwestern University
2 #
3 # This file is part of PWSpy.
4 #
5 # PWSpy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
9 #

10 # PWSpy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with PWSpy. If not, see <https://www.gnu.org/licenses/>.
17 from pwspy.utility.micromanager import PropertyMap
18

19 from pwspy.utility.micromanager.positions import PositionList
20

21 """This example demonstrates how to use generate new cell positions from a set of␣
→˓positions after the sample has been picked up and likely shifted or rotated.

22 This method relies on measuring a set (at least 3) of reference positions before and␣
→˓after moving the dish. You can then use these positions to generate an

23 affine transform. This affine transform can then be applied to your original cell␣
→˓positions in order to generate a new set of positions for the same cells.

24 In the case of a standard cell culture dish it is best to use the corners of the glass␣
→˓coverslip as your reference locations.

25

26 @author: Nick Anthony
(continues on next page)

3.1. Examples 93

pwspy Documentation, Release 0.2.14

(continued from previous page)

27 """
28

29 if __name__ == '__main__':
30

31 import pathlib as pl
32 import matplotlib.pyplot as plt
33 from skimage.transform import AffineTransform
34 import numpy as np
35

36 plt.ion()
37 NCPath = pl.Path(r'Z:\Nick\NU-NC_EtOH fixation comparison\NC\Buccal cell')
38 NUPath = pl.Path(r'Z:\Nick\NU-NC_EtOH fixation comparison\NU\Buccal')
39

40 # Load the position list of the coverslip corners taken at the beginning of the␣
→˓experiment.

41 preTreatRefPositions = PositionList.fromNanoMatFile(NCPath / 'corners_list2.mat',
→˓'TIXYDrive')

42 # Load the position list of the coverslip corners after placing the dish back on the␣
→˓microscope after treatment.

43 postTreatRefPositions = PositionList.fromPropertyMap(PropertyMap.loadFromFile(NUPath␣
→˓/ 'corners.pos'))

44 # Generate an affine transform describing the difference between the two position␣
→˓lists.

45 transformMatrix = preTreatRefPositions.getAffineTransform(postTreatRefPositions)
46 # Load the positions of the cells we are measuring before the dish was removed.
47 preTreatCellPositions = PositionList.fromNanoMatFile(NCPath / 'cell_list.mat',

→˓'TIXYDrive')
48 # Transform the cell positions to the new expected locations.
49 postTreatCellPositions = preTreatCellPositions.applyAffineTransform(transformMatrix)
50 # Save the new positions to a file that can be loaded by Micro-Manager.
51 postTreatCellPositions.toPropertyMap().saveToFile(NUPath / 'transformedPositions.pos

→˓')
52

53 # Plot the reference and cell positions before treatment
54 fig, ax = plt.subplots()
55 preTreatRefPositions.plot(fig, ax)
56 preTreatCellPositions.plot(fig, ax)
57

58 # Plot the reference and cell positions after treatment
59 fig2, ax2 = plt.subplots()
60 postTreatRefPositions.plot(fig2, ax2)
61 postTreatCellPositions.plot(fig2, ax2)
62

63 af = AffineTransform(np.vstack([transformMatrix, [0, 0, 1]]))
64 print(f"Scale: {af.scale}, Shear: {af.shear}, Rotation: {af.rotation / (2*np.pi) *␣

→˓360}, Translation: {af.translation}")

94 Chapter 3. Examples

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

95

pwspy Documentation, Release 0.2.14

96 Chapter 4. Indices and tables

PYTHON MODULE INDEX

p
pwspy, 5
pwspy.analysis, 5
pwspy.analysis.compilation, 5
pwspy.analysis.dynamics, 13
pwspy.analysis.pws, 8
pwspy.analysis.warnings, 13
pwspy.dataTypes, 18
pwspy.utility, 55
pwspy.utility.acquisition, 56
pwspy.utility.DConversion, 63
pwspy.utility.fileIO, 64
pwspy.utility.fluorescence, 65
pwspy.utility.machineVision, 66
pwspy.utility.micromanager, 68
pwspy.utility.misc, 73
pwspy.utility.plotting, 73
pwspy.utility.reflection, 74
pwspy.utility.reflection.extraReflectance, 74
pwspy.utility.reflection.multilayerReflectanceEngine,

77
pwspy.utility.reflection.reflectanceHelper,

80

97

pwspy Documentation, Release 0.2.14

98 Python Module Index

INDEX

A
Acquisition (class in pwspy.dataTypes), 53
acquisition (pwspy.utility.acquisition.SequenceAcquisition

attribute), 57
addLayer() (pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack

method), 79
addLayer() (pwspy.utility.reflection.multilayerReflectanceEngine.Stack

method), 78
applyAffineTransform()

(pwspy.utility.micromanager.PositionList
method), 70

asDict() (pwspy.analysis.dynamics.DynamicsAnalysisSettings
method), 14

asDict() (pwspy.analysis.pws.PWSAnalysisSettings
method), 9

autoCorrelationSlope
(pwspy.analysis.pws.PWSAnalysisResults
attribute), 11

autoCorrMinSub (pwspy.analysis.pws.PWSAnalysisSettings
attribute), 9

autoCorrStopIndex (pwspy.analysis.pws.PWSAnalysisSettings
attribute), 9

B
binning (pwspy.dataTypes.DynMetaData property), 22
binning (pwspy.dataTypes.FluorMetaData property), 25
binning (pwspy.dataTypes.PwsMetaData property), 20

C
cached_property (class in pwspy.utility.misc), 73
calculateReflectance()

(pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack
method), 79

calculateReflectance()
(pwspy.utility.reflection.multilayerReflectanceEngine.Stack
method), 78

CameraCorrection (class in pwspy.dataTypes), 52
cameraCorrection (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9
circularIntegration()

(pwspy.utility.reflection.multilayerReflectanceEngine.Stack
method), 78

close() (pwspy.utility.DConversion.S2DMatlabBridge
method), 63

ContainerStep (class in pwspy.utility.acquisition), 62
copy() (pwspy.utility.micromanager.MultiStagePosition

method), 72
copySharedDataToSharedMemory()

(pwspy.analysis.dynamics.DynamicsAnalysis
method), 17

copySharedDataToSharedMemory()
(pwspy.analysis.pws.PWSAnalysis method),
12

correctCameraEffects() (pwspy.dataTypes.DynCube
method), 31

correctCameraEffects()
(pwspy.dataTypes.ICRawBase method), 45

correctCameraEffects() (pwspy.dataTypes.PwsCube
method), 27

create() (pwspy.analysis.dynamics.DynamicsAnalysisResults
class method), 15

create() (pwspy.analysis.pws.PWSAnalysisResults
class method), 10

create() (pwspy.dataTypes.ExtraReflectionCube class
method), 41

createRIDefinitionFromGladstoneDale()
(pwspy.utility.DConversion.S2DMatlabBridge
method), 63

createSystemConfiguration()
(pwspy.utility.DConversion.S2DMatlabBridge
method), 63

D
darkCounts (pwspy.dataTypes.CameraCorrection

attribute), 52
data (pwspy.dataTypes.ExtraReflectanceCube attribute),

38
decodeHdf() (pwspy.dataTypes.DynCube class method),

31
decodeHdf() (pwspy.dataTypes.ExtraReflectanceCube

class method), 38
decodeHdf() (pwspy.dataTypes.ExtraReflectionCube

class method), 41
decodeHdf() (pwspy.dataTypes.ICBase class method),

99

pwspy Documentation, Release 0.2.14

43
decodeHdf() (pwspy.dataTypes.ICRawBase class

method), 45
decodeHdf() (pwspy.dataTypes.KCube class method),

35
decodeHdf() (pwspy.dataTypes.PwsCube class method),

27
decodeHdfMetadata()

(pwspy.dataTypes.DynMetaData static
method), 21

decodeHdfMetadata()
(pwspy.dataTypes.FluorMetaData static
method), 25

decodeHdfMetadata()
(pwspy.dataTypes.PwsMetaData static
method), 18

defaultXYStage (pwspy.utility.micromanager.MultiStagePosition
attribute), 72

defaultZStage (pwspy.utility.micromanager.MultiStagePosition
attribute), 72

delete() (pwspy.dataTypes.RoiFile method), 49
deleteRoi() (pwspy.dataTypes.RoiFile static method),

49
diffusion (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
directory2dirName() (pwspy.dataTypes.ERMetaData

class method), 24
dirName2Directory() (pwspy.dataTypes.ERMetaData

class method), 23
dynamics (pwspy.dataTypes.Acquisition attribute), 53
DynamicsAnalysis (class in pwspy.analysis.dynamics),

17
DynamicsAnalysisResults (class in

pwspy.analysis.dynamics), 15
DynamicsAnalysisSettings (class in

pwspy.analysis.dynamics), 14
DynamicsCompilerSettings (class in

pwspy.analysis.compilation), 7
DynamicsRoiCompilationResults (class in

pwspy.analysis.compilation), 7
DynamicsRoiCompiler (class in

pwspy.analysis.compilation), 7
DynCube (class in pwspy.dataTypes), 31
DynCube.ProcessingStatus (class in

pwspy.dataTypes), 31
DynMetaData (class in pwspy.dataTypes), 21
DynMetaData.FileFormats (class in

pwspy.dataTypes), 21

E
edgeDetectRegisterTranslation() (in module

pwspy.utility.machineVision), 68
editNotes() (pwspy.dataTypes.Acquisition method), 53

encode() (pwspy.utility.micromanager.Property
method), 71

encode() (pwspy.utility.micromanager.PropertyMap
method), 72

encodeHdfMetadata()
(pwspy.dataTypes.DynMetaData method),
21

encodeHdfMetadata()
(pwspy.dataTypes.FluorMetaData method), 25

encodeHdfMetadata()
(pwspy.dataTypes.PwsMetaData method),
19

ERMetaData (class in pwspy.dataTypes), 23
exposure (pwspy.dataTypes.DynMetaData property), 23
exposure (pwspy.dataTypes.FluorMetaData property),

25
exposure (pwspy.dataTypes.PwsMetaData property), 20
ExtraReflectanceCube (class in pwspy.dataTypes), 38
extraReflectanceId (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 8
ExtraReflectionCube (class in pwspy.dataTypes), 41
extraReflectionIdTag

(pwspy.analysis.dynamics.DynamicsAnalysisResults
attribute), 16

extraReflectionTag (pwspy.analysis.pws.PWSAnalysisResults
attribute), 11

F
FieldDecorator() (pwspy.analysis.dynamics.DynamicsAnalysisResults

static method), 15
FieldDecorator() (pwspy.analysis.pws.PWSAnalysisResults

static method), 10
fields() (pwspy.analysis.dynamics.DynamicsAnalysisResults

static method), 15
fields() (pwspy.analysis.pws.PWSAnalysisResults

static method), 10
fileName2Name() (pwspy.analysis.dynamics.DynamicsAnalysisResults

static method), 15
fileName2Name() (pwspy.analysis.pws.PWSAnalysisResults

static method), 11
filterCutoff (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 8
filterDust() (pwspy.dataTypes.DynCube method), 31
filterDust() (pwspy.dataTypes.ExtraReflectanceCube

method), 39
filterDust() (pwspy.dataTypes.ExtraReflectionCube

method), 41
filterDust() (pwspy.dataTypes.ICBase method), 43
filterDust() (pwspy.dataTypes.ICRawBase method),

45
filterDust() (pwspy.dataTypes.KCube method), 35
filterDust() (pwspy.dataTypes.PwsCube method), 27
filterOrder (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 8

100 Index

pwspy Documentation, Release 0.2.14

fluorescence (pwspy.dataTypes.Acquisition attribute),
53

FluorescenceImage (class in pwspy.dataTypes), 54
FluorMetaData (class in pwspy.dataTypes), 25
fromHDF() (pwspy.dataTypes.RoiFile class method), 50
fromHDF_legacy() (pwspy.dataTypes.RoiFile class

method), 50
fromHDF_legacy_legacy() (pwspy.dataTypes.RoiFile

class method), 50
fromHdfDataset() (pwspy.dataTypes.ERMetaData

class method), 24
fromHdfDataset() (pwspy.dataTypes.ExtraReflectanceCube

class method), 39
fromHdfDataset() (pwspy.dataTypes.KCube class

method), 35
fromHdfDataset() (pwspy.dataTypes.PwsCube class

method), 27
fromHdfFile() (pwspy.dataTypes.ERMetaData class

method), 24
fromHdfFile() (pwspy.dataTypes.ExtraReflectanceCube

class method), 39
fromJson() (pwspy.analysis.dynamics.DynamicsAnalysisSettings

class method), 14
fromJson() (pwspy.analysis.pws.PWSAnalysisSettings

class method), 10
fromJsonFile() (pwspy.dataTypes.CameraCorrection

class method), 52
fromJsonString() (pwspy.analysis.dynamics.DynamicsAnalysisSettings

class method), 14
fromJsonString() (pwspy.analysis.pws.PWSAnalysisSettings

class method), 10
fromMask() (pwspy.dataTypes.Roi class method), 48
fromMat() (pwspy.dataTypes.RoiFile class method), 50
fromMetadata() (pwspy.dataTypes.DynCube class

method), 32
fromMetadata() (pwspy.dataTypes.ExtraReflectanceCube

class method), 39
fromMetadata() (pwspy.dataTypes.FluorescenceImage

class method), 54
fromMetadata() (pwspy.dataTypes.PwsCube class

method), 27
fromNano() (pwspy.dataTypes.PwsCube class method),

28
fromNano() (pwspy.dataTypes.PwsMetaData class

method), 19
fromNanoMatFile() (pwspy.utility.micromanager.PositionList

class method), 70
fromOldPWS() (pwspy.dataTypes.DynCube class

method), 32
fromOldPWS() (pwspy.dataTypes.DynMetaData class

method), 21
fromOldPWS() (pwspy.dataTypes.PwsCube class

method), 28
fromOldPWS() (pwspy.dataTypes.PwsMetaData class

method), 19
fromOpd() (pwspy.dataTypes.KCube static method), 36
fromPropertyMap() (pwspy.utility.micromanager.PositionList

static method), 70
fromPwsCube() (pwspy.dataTypes.KCube class method),

36
fromTiff() (pwspy.dataTypes.DynCube class method),

32
fromTiff() (pwspy.dataTypes.DynMetaData class

method), 21
fromTiff() (pwspy.dataTypes.FluorescenceImage class

method), 54
fromTiff() (pwspy.dataTypes.FluorMetaData class

method), 25
fromTiff() (pwspy.dataTypes.PwsCube class method),

28
fromTiff() (pwspy.dataTypes.PwsMetaData class

method), 19
fromVerts() (pwspy.dataTypes.Roi class method), 48

G
generateMaterialCombos() (in module

pwspy.utility.reflection.extraReflectance),
75

generateRExtraCubes() (in module
pwspy.utility.reflection.extraReflectance),
76

GenericCompilerSettings (class in
pwspy.analysis.compilation), 7

GenericRoiCompilationResults (class in
pwspy.analysis.compilation), 8

GenericRoiCompiler (class in
pwspy.analysis.compilation), 8

getAffineTransform()
(pwspy.utility.micromanager.PositionList
method), 70

getAllCubeCombos() (in module
pwspy.utility.reflection.extraReflectance),
76

getAnalyses() (pwspy.dataTypes.DynMetaData
method), 22

getAnalyses() (pwspy.dataTypes.PwsMetaData
method), 19

getAnalysesAtPath()
(pwspy.dataTypes.DynMetaData class method),
22

getAnalysesAtPath()
(pwspy.dataTypes.PwsMetaData class method),
19

getAnalysisResultsClass()
(pwspy.dataTypes.DynMetaData static
method), 22

getAnalysisResultsClass()
(pwspy.dataTypes.PwsMetaData static

Index 101

pwspy Documentation, Release 0.2.14

method), 19
getAutocorrelation() (pwspy.dataTypes.DynCube

method), 32
getAutoCorrelation() (pwspy.dataTypes.KCube

method), 36
getCoordinate() (pwspy.utility.acquisition.ContainerStep

method), 62
getCoordinate() (pwspy.utility.acquisition.IterableSequencerStep

method), 59
getCoordinate() (pwspy.utility.acquisition.PositionsStep

method), 61
getCoordinate() (pwspy.utility.acquisition.SequencerStep

method), 58
getCoordinate() (pwspy.utility.acquisition.TimeStep

method), 60
getCoordinate() (pwspy.utility.acquisition.ZStackStep

method), 60
getIterationName() (pwspy.utility.acquisition.IterableSequencerStep

method), 59
getIterationName() (pwspy.utility.acquisition.PositionsStep

method), 61
getIterationName() (pwspy.utility.acquisition.TimeStep

method), 60
getIterationName() (pwspy.utility.acquisition.ZStackStep

method), 60
getMeanSpectra() (pwspy.dataTypes.DynCube

method), 33
getMeanSpectra() (pwspy.dataTypes.ExtraReflectanceCube

method), 39
getMeanSpectra() (pwspy.dataTypes.ExtraReflectionCube

method), 41
getMeanSpectra() (pwspy.dataTypes.ICBase method),

43
getMeanSpectra() (pwspy.dataTypes.ICRawBase

method), 46
getMeanSpectra() (pwspy.dataTypes.KCube method),

36
getMeanSpectra() (pwspy.dataTypes.PwsCube

method), 28
getMetadataClass() (pwspy.dataTypes.DynCube

static method), 33
getMetadataClass() (pwspy.dataTypes.ICRawBase

static method), 46
getMetadataClass() (pwspy.dataTypes.PwsCube

static method), 29
getNotes() (pwspy.dataTypes.Acquisition method), 53
getOpd() (pwspy.dataTypes.KCube method), 36
getReflectance() (in module

pwspy.utility.reflection.reflectanceHelper),
80

getRefractiveIndex() (in module
pwspy.utility.reflection.reflectanceHelper),
81

getRefractiveIndex()

(pwspy.utility.reflection.multilayerReflectanceEngine.Layer
method), 78

getRMSFromOPD() (pwspy.dataTypes.KCube method),
37

getRoi() (pwspy.dataTypes.RoiFile method), 51
getRois() (pwspy.dataTypes.Acquisition method), 53
getStepIteration() (pwspy.utility.acquisition.SequencerCoordinate

method), 57
getTheoreticalReflectances() (in module

pwspy.utility.reflection.extraReflectance),
75

getThumbnail() (pwspy.dataTypes.Acquisition
method), 53

getThumbnail() (pwspy.dataTypes.DynMetaData
method), 22

getThumbnail() (pwspy.dataTypes.FluorMetaData
method), 25

getThumbnail() (pwspy.dataTypes.PwsMetaData
method), 19

getTreePath() (pwspy.utility.acquisition.ContainerStep
method), 62

getTreePath() (pwspy.utility.acquisition.IterableSequencerStep
method), 59

getTreePath() (pwspy.utility.acquisition.PositionsStep
method), 61

getTreePath() (pwspy.utility.acquisition.SequencerStep
method), 58

getTreePath() (pwspy.utility.acquisition.TimeStep
method), 60

getTreePath() (pwspy.utility.acquisition.ZStackStep
method), 60

getValidRoisInPath() (pwspy.dataTypes.RoiFile
static method), 51

getXYPosition() (pwspy.utility.micromanager.MultiStagePosition
method), 72

getZPosition() (pwspy.utility.micromanager.MultiStagePosition
method), 72

H
hasNotes() (pwspy.dataTypes.Acquisition method), 53
hook() (pwspy.utility.acquisition.ContainerStep static

method), 62
hook() (pwspy.utility.acquisition.IterableSequencerStep

static method), 59
hook() (pwspy.utility.acquisition.PositionsStep static

method), 61
hook() (pwspy.utility.acquisition.SequencerStep static

method), 58
hook() (pwspy.utility.acquisition.TimeStep static

method), 61
hook() (pwspy.utility.acquisition.ZStackStep static

method), 60
hook() (pwspy.utility.micromanager.Property static

method), 71

102 Index

pwspy Documentation, Release 0.2.14

hook() (pwspy.utility.micromanager.PropertyMap static
method), 72

I
ICBase (class in pwspy.dataTypes), 43
ICRawBase (class in pwspy.dataTypes), 45
ICRawBase.ProcessingStatus (class in

pwspy.dataTypes), 45
idTag (pwspy.dataTypes.DynMetaData property), 23
idTag (pwspy.dataTypes.ERMetaData property), 24
idTag (pwspy.dataTypes.FluorMetaData property), 25
idTag (pwspy.dataTypes.PwsMetaData attribute), 20
Image (class in pwspy.utility.micromanager), 69
imCubeIdTag (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
imCubeIdTag (pwspy.analysis.pws.PWSAnalysisResults

attribute), 11
index (pwspy.dataTypes.DynCube property), 35
index (pwspy.dataTypes.ExtraReflectanceCube prop-

erty), 40
index (pwspy.dataTypes.ExtraReflectionCube property),

43
index (pwspy.dataTypes.ICBase property), 44
index (pwspy.dataTypes.ICRawBase property), 47
index (pwspy.dataTypes.KCube property), 38
index (pwspy.dataTypes.PwsCube property), 31
interfaceMatrix() (pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack

static method), 79
interfaceMatrix() (pwspy.utility.reflection.multilayerReflectanceEngine.Stack

static method), 78
isSubPathOf() (pwspy.utility.acquisition.SequencerCoordinate

method), 57
isValidPath() (pwspy.dataTypes.FluorMetaData class

method), 25
IterableSequencerStep (class in

pwspy.utility.acquisition), 59
iterateChildren() (pwspy.utility.acquisition.ContainerStep

method), 62
iterateChildren() (pwspy.utility.acquisition.IterableSequencerStep

method), 59
iterateChildren() (pwspy.utility.acquisition.PositionsStep

method), 61
iterateChildren() (pwspy.utility.acquisition.SequencerStep

method), 58
iterateChildren() (pwspy.utility.acquisition.TimeStep

method), 61
iterateChildren() (pwspy.utility.acquisition.ZStackStep

method), 60

K
KCube (class in pwspy.dataTypes), 35

L
label (pwspy.utility.micromanager.MultiStagePosition

attribute), 72
Layer (class in pwspy.utility.reflection.multilayerReflectanceEngine),

77
ld (pwspy.analysis.pws.PWSAnalysisResults attribute),

11
linearityPolynomial

(pwspy.dataTypes.CameraCorrection at-
tribute), 52

load() (pwspy.analysis.dynamics.DynamicsAnalysisResults
class method), 15

load() (pwspy.analysis.pws.PWSAnalysisResults class
method), 11

loadAnalysis() (pwspy.dataTypes.DynMetaData
method), 22

loadAnalysis() (pwspy.dataTypes.PwsMetaData
method), 20

loadAndProcess() (in module pwspy.utility.fileIO), 64
loadAny() (pwspy.dataTypes.DynCube class method),

33
loadAny() (pwspy.dataTypes.PwsCube class method),

29
loadAny() (pwspy.dataTypes.PwsMetaData class

method), 20
loadAny() (pwspy.dataTypes.RoiFile class method), 51
loadDirectory() (in module pwspy.utility.acquisition),

56
loadRoi() (pwspy.dataTypes.Acquisition method), 53

M
Material (class in pwspy.utility.reflection), 81
meanReflectance (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
meanReflectance (pwspy.analysis.pws.PWSAnalysisResults

attribute), 11
metadata (pwspy.dataTypes.ExtraReflectanceCube at-

tribute), 38
metadataToJson() (pwspy.dataTypes.PwsMetaData

method), 20
mirrorX() (pwspy.utility.micromanager.PositionList

method), 70
mirrorY() (pwspy.utility.micromanager.PositionList

method), 70
module

pwspy, 5
pwspy.analysis, 5
pwspy.analysis.compilation, 5
pwspy.analysis.dynamics, 13
pwspy.analysis.pws, 8
pwspy.analysis.warnings, 13
pwspy.dataTypes, 18
pwspy.utility, 55
pwspy.utility.acquisition, 56
pwspy.utility.DConversion, 63
pwspy.utility.fileIO, 64

Index 103

pwspy Documentation, Release 0.2.14

pwspy.utility.fluorescence, 65
pwspy.utility.machineVision, 66
pwspy.utility.micromanager, 68
pwspy.utility.misc, 73
pwspy.utility.plotting, 73
pwspy.utility.reflection, 74
pwspy.utility.reflection.extraReflectance,

74
pwspy.utility.reflection.multilayerReflectanceEngine,

77
pwspy.utility.reflection.reflectanceHelper,

80
moduleVersion (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
moduleVersion (pwspy.analysis.pws.PWSAnalysisResults

attribute), 11
MultiStagePosition (class in

pwspy.utility.micromanager), 72

N
name2FileName() (pwspy.analysis.dynamics.DynamicsAnalysisResults

static method), 16
name2FileName() (pwspy.analysis.pws.PWSAnalysisResults

static method), 11
NonPolarizedStack (class in

pwspy.utility.reflection.multilayerReflectanceEngine),
79

normalizeByExposure() (pwspy.dataTypes.DynCube
method), 33

normalizeByExposure()
(pwspy.dataTypes.ICRawBase method), 46

normalizeByExposure() (pwspy.dataTypes.PwsCube
method), 29

normalizeByReference() (pwspy.dataTypes.DynCube
method), 33

normalizeByReference()
(pwspy.dataTypes.ICRawBase method), 46

normalizeByReference() (pwspy.dataTypes.PwsCube
method), 29

numericalAperture (pwspy.analysis.pws.PWSAnalysisSettings
attribute), 9

numericalAperture (pwspy.dataTypes.ERMetaData
property), 24

O
opd (pwspy.analysis.pws.PWSAnalysisResults attribute),

12
ORBRegisterTransform() (in module

pwspy.utility.machineVision), 67

P
performFullPreProcessing()

(pwspy.dataTypes.DynCube method), 33

performFullPreProcessing()
(pwspy.dataTypes.ICRawBase method), 46

performFullPreProcessing()
(pwspy.dataTypes.PwsCube method), 29

pixelSizeUm (pwspy.dataTypes.DynMetaData prop-
erty), 23

pixelSizeUm (pwspy.dataTypes.FluorMetaData prop-
erty), 26

pixelSizeUm (pwspy.dataTypes.PwsMetaData prop-
erty), 20

plot() (pwspy.utility.micromanager.PositionList
method), 71

plot() (pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack
method), 80

plot() (pwspy.utility.reflection.multilayerReflectanceEngine.Stack
method), 79

plotExtraReflection() (in module
pwspy.utility.reflection.extraReflectance),
76

plotMean() (pwspy.dataTypes.DynCube method), 34
plotMean() (pwspy.dataTypes.ExtraReflectanceCube

method), 39
plotMean() (pwspy.dataTypes.ExtraReflectionCube

method), 42
plotMean() (pwspy.dataTypes.ICBase method), 44
plotMean() (pwspy.dataTypes.ICRawBase method), 46
plotMean() (pwspy.dataTypes.KCube method), 37
plotMean() (pwspy.dataTypes.PwsCube method), 29
Polarization (class in

pwspy.utility.reflection.multilayerReflectanceEngine),
77

polynomialOrder (pwspy.analysis.pws.PWSAnalysisSettings
attribute), 8

polynomialRms (pwspy.analysis.pws.PWSAnalysisResults
attribute), 12

Position1d (class in pwspy.utility.micromanager), 69
Position2d (class in pwspy.utility.micromanager), 69
PositionList (class in pwspy.utility.micromanager), 70
positions (pwspy.utility.micromanager.PositionList at-

tribute), 70
PositionsStep (class in pwspy.utility.acquisition), 61
printSubTree() (pwspy.utility.acquisition.ContainerStep

method), 62
printSubTree() (pwspy.utility.acquisition.IterableSequencerStep

method), 59
printSubTree() (pwspy.utility.acquisition.PositionsStep

method), 61
printSubTree() (pwspy.utility.acquisition.SequencerStep

method), 58
printSubTree() (pwspy.utility.acquisition.TimeStep

method), 61
printSubTree() (pwspy.utility.acquisition.ZStackStep

method), 60
processParallel() (in module pwspy.utility.fileIO), 65

104 Index

pwspy Documentation, Release 0.2.14

profileDec() (in module pwspy.utility.misc), 73
propagationMatrix()

(pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack
static method), 80

propagationMatrix()
(pwspy.utility.reflection.multilayerReflectanceEngine.Stack
static method), 79

properties (pwspy.utility.micromanager.PropertyMap
attribute), 72

Property (class in pwspy.utility.micromanager), 71
PropertyMap (class in pwspy.utility.micromanager), 72
pType (pwspy.utility.micromanager.Property attribute),

71
pws (pwspy.dataTypes.Acquisition attribute), 54
PWSAnalysis (class in pwspy.analysis.pws), 12
PWSAnalysisResults (class in pwspy.analysis.pws), 10
PWSAnalysisSettings (class in pwspy.analysis.pws), 8
PWSCompilerSettings (class in

pwspy.analysis.compilation), 6
PwsCube (class in pwspy.dataTypes), 26
PwsCube.ProcessingStatus (class in

pwspy.dataTypes), 27
PwsMetaData (class in pwspy.dataTypes), 18
PwsMetaData.FileFormats (class in

pwspy.dataTypes), 18
pwspy

module, 5
pwspy.analysis

module, 5
pwspy.analysis.compilation

module, 5
pwspy.analysis.dynamics

module, 13
pwspy.analysis.pws

module, 8
pwspy.analysis.warnings

module, 13
pwspy.dataTypes

module, 18
pwspy.utility

module, 55
pwspy.utility.acquisition

module, 56
pwspy.utility.DConversion

module, 63
pwspy.utility.fileIO

module, 64
pwspy.utility.fluorescence

module, 65
pwspy.utility.machineVision

module, 66
pwspy.utility.micromanager

module, 68
pwspy.utility.misc

module, 73
pwspy.utility.plotting

module, 73
pwspy.utility.reflection

module, 74
pwspy.utility.reflection.extraReflectance

module, 74
pwspy.utility.reflection.multilayerReflectanceEngine

module, 77
pwspy.utility.reflection.reflectanceHelper

module, 80
PWSRoiCompilationResults (class in

pwspy.analysis.compilation), 6
PWSRoiCompiler (class in pwspy.analysis.compilation),

6

R
referenceIdTag (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
referenceIdTag (pwspy.analysis.pws.PWSAnalysisResults

attribute), 12
referenceMaterial (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9
reflectance (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
reflectance (pwspy.analysis.pws.PWSAnalysisResults

attribute), 12
relativeUnits (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9
releaseMemory() (pwspy.analysis.pws.PWSAnalysisResults

method), 11
removeAnalysis() (pwspy.dataTypes.DynMetaData

method), 22
removeAnalysis() (pwspy.dataTypes.PwsMetaData

method), 20
renameStage() (pwspy.utility.micromanager.PositionList

method), 71
renameXYStage() (pwspy.utility.micromanager.MultiStagePosition

method), 72
rms (pwspy.analysis.pws.PWSAnalysisResults attribute),

12
rms_t_squared (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
Roi (class in pwspy.dataTypes), 48
roiColor() (in module pwspy.utility.plotting), 74
RoiFile (class in pwspy.dataTypes), 49
RoiFile.FileFormats (class in pwspy.dataTypes), 49
row() (pwspy.utility.acquisition.ContainerStep method),

62
row() (pwspy.utility.acquisition.IterableSequencerStep

method), 59
row() (pwspy.utility.acquisition.PositionsStep method),

61

Index 105

pwspy Documentation, Release 0.2.14

row() (pwspy.utility.acquisition.SequencerStep method),
59

row() (pwspy.utility.acquisition.TimeStep method), 61
row() (pwspy.utility.acquisition.ZStackStep method), 60
rSquared (pwspy.analysis.pws.PWSAnalysisResults at-

tribute), 12
run() (pwspy.analysis.compilation.DynamicsRoiCompiler

method), 7
run() (pwspy.analysis.compilation.PWSRoiCompiler

method), 6
run() (pwspy.analysis.dynamics.DynamicsAnalysis

method), 17
run() (pwspy.analysis.pws.PWSAnalysis method), 13
RuntimeSequenceSettings (class in

pwspy.utility.acquisition), 57

S
S2DMatlabBridge (class in pwspy.utility.DConversion),

63
saveAnalysis() (pwspy.dataTypes.DynMetaData

method), 22
saveAnalysis() (pwspy.dataTypes.PwsMetaData

method), 20
saveRoi() (pwspy.dataTypes.Acquisition method), 53
selectLassoROI() (pwspy.dataTypes.DynCube

method), 34
selectLassoROI() (pwspy.dataTypes.ExtraReflectanceCube

method), 40
selectLassoROI() (pwspy.dataTypes.ExtraReflectionCube

method), 42
selectLassoROI() (pwspy.dataTypes.ICBase method),

44
selectLassoROI() (pwspy.dataTypes.ICRawBase

method), 47
selectLassoROI() (pwspy.dataTypes.KCube method),

37
selectLassoROI() (pwspy.dataTypes.PwsCube

method), 30
selectRectangleROI() (pwspy.dataTypes.DynCube

method), 34
selectRectangleROI()

(pwspy.dataTypes.ExtraReflectanceCube
method), 40

selectRectangleROI()
(pwspy.dataTypes.ExtraReflectionCube
method), 42

selectRectangleROI() (pwspy.dataTypes.ICBase
method), 44

selectRectangleROI() (pwspy.dataTypes.ICRawBase
method), 47

selectRectangleROI() (pwspy.dataTypes.KCube
method), 38

selectRectangleROI() (pwspy.dataTypes.PwsCube
method), 30

selIndex() (pwspy.dataTypes.DynCube method), 34
selIndex() (pwspy.dataTypes.ExtraReflectanceCube

method), 40
selIndex() (pwspy.dataTypes.ExtraReflectionCube

method), 42
selIndex() (pwspy.dataTypes.ICBase method), 44
selIndex() (pwspy.dataTypes.ICRawBase method), 47
selIndex() (pwspy.dataTypes.KCube method), 37
selIndex() (pwspy.dataTypes.PwsCube method), 29
SequenceAcquisition (class in

pwspy.utility.acquisition), 57
SequencerCoordinate (class in

pwspy.utility.acquisition), 57
sequencerCoordinate

(pwspy.utility.acquisition.SequenceAcquisition
attribute), 57

SequencerCoordinateRange (class in
pwspy.utility.acquisition), 58

SequencerStep (class in pwspy.utility.acquisition), 58
setAcceptedIterations()

(pwspy.utility.acquisition.SequencerCoordinateRange
method), 58

settings (pwspy.analysis.dynamics.DynamicsAnalysisResults
attribute), 16

settings (pwspy.analysis.pws.PWSAnalysisResults at-
tribute), 12

SIFTRegisterTransform() (in module
pwspy.utility.machineVision), 67

SigmaToD_AllInputs()
(pwspy.utility.DConversion.S2DMatlabBridge
method), 63

skipAdvanced (pwspy.analysis.pws.PWSAnalysisSettings
attribute), 9

Stack (class in pwspy.utility.reflection.multilayerReflectanceEngine),
78

stagePositions (pwspy.utility.micromanager.MultiStagePosition
attribute), 72

stepIterations() (pwspy.utility.acquisition.IterableSequencerStep
method), 59

stepIterations() (pwspy.utility.acquisition.PositionsStep
method), 62

stepIterations() (pwspy.utility.acquisition.TimeStep
method), 61

stepIterations() (pwspy.utility.acquisition.ZStackStep
method), 60

subtractExtraReflection()
(pwspy.dataTypes.DynCube method), 34

subtractExtraReflection()
(pwspy.dataTypes.ICRawBase method), 47

subtractExtraReflection()
(pwspy.dataTypes.PwsCube method), 30

systemName (pwspy.dataTypes.DynMetaData property),
23

systemName (pwspy.dataTypes.ERMetaData property),

106 Index

pwspy Documentation, Release 0.2.14

24
systemName (pwspy.dataTypes.FluorMetaData prop-

erty), 26
systemName (pwspy.dataTypes.PwsMetaData property),

21

T
time (pwspy.analysis.dynamics.DynamicsAnalysisResults

attribute), 16
time (pwspy.analysis.pws.PWSAnalysisResults attribute),

12
time (pwspy.dataTypes.DynMetaData property), 23
time (pwspy.dataTypes.FluorMetaData property), 26
time (pwspy.dataTypes.PwsMetaData property), 21
times (pwspy.dataTypes.DynCube property), 35
times (pwspy.dataTypes.DynMetaData property), 23
TimeStep (class in pwspy.utility.acquisition), 60
to8bit() (in module pwspy.utility.machineVision), 66
toDataClass() (pwspy.dataTypes.DynMetaData

method), 22
toDataClass() (pwspy.dataTypes.FluorMetaData

method), 25
toDataClass() (pwspy.dataTypes.PwsMetaData

method), 20
toHDF() (pwspy.analysis.dynamics.DynamicsAnalysisResults

method), 16
toHDF() (pwspy.analysis.pws.PWSAnalysisResults

method), 11
toHDF() (pwspy.dataTypes.RoiFile class method), 51
toHdfDataset() (pwspy.dataTypes.DynCube method),

34
toHdfDataset() (pwspy.dataTypes.ERMetaData

method), 24
toHdfDataset() (pwspy.dataTypes.ExtraReflectanceCube

method), 40
toHdfDataset() (pwspy.dataTypes.ExtraReflectionCube

method), 42
toHdfDataset() (pwspy.dataTypes.ICBase method), 44
toHdfDataset() (pwspy.dataTypes.ICRawBase

method), 47
toHdfDataset() (pwspy.dataTypes.KCube method), 38
toHdfDataset() (pwspy.dataTypes.PwsCube method),

30
toHdfFile() (pwspy.dataTypes.ExtraReflectanceCube

method), 40
toJson() (pwspy.analysis.dynamics.DynamicsAnalysisSettings

method), 15
toJson() (pwspy.analysis.pws.PWSAnalysisSettings

method), 10
toJsonFile() (pwspy.dataTypes.CameraCorrection

method), 52
toJsonString() (pwspy.analysis.dynamics.DynamicsAnalysisSettings

method), 15

toJsonString() (pwspy.analysis.pws.PWSAnalysisSettings
method), 10

toNanoMatFile() (pwspy.utility.micromanager.PositionList
method), 71

toOldPWS() (pwspy.dataTypes.PwsCube method), 30
toPropertyMap() (pwspy.utility.micromanager.PositionList

method), 71
toTiff() (pwspy.dataTypes.FluorescenceImage

method), 54
toTiff() (pwspy.dataTypes.PwsCube method), 30
transform() (pwspy.dataTypes.Roi method), 49

U
update() (pwspy.dataTypes.RoiFile method), 52
updateFolderStructure() (in module

pwspy.utility.fluorescence), 66

V
validPath() (pwspy.dataTypes.ERMetaData class

method), 24
value (pwspy.utility.micromanager.Property attribute),

71
verts (pwspy.dataTypes.Roi property), 49

W
wavelength (pwspy.dataTypes.DynMetaData property),

23
wavelengths (pwspy.dataTypes.ExtraReflectanceCube

property), 40
wavelengths (pwspy.dataTypes.PwsCube property), 31
wavelengthStart (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9
wavelengthStop (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9
waveNumberCutoff (pwspy.analysis.pws.PWSAnalysisSettings

attribute), 9

X
x (pwspy.utility.micromanager.Position2d attribute), 69
xyStage (pwspy.utility.micromanager.Position2d at-

tribute), 69

Y
y (pwspy.utility.micromanager.Position2d attribute), 69

Z
z (pwspy.utility.micromanager.Position1d attribute), 69
ZStackStep (class in pwspy.utility.acquisition), 60
zStage (pwspy.utility.micromanager.Position1d at-

tribute), 69

Index 107

	Usage
	API
	pwspy.analysis
	Submodules
	pwspy.analysis.compilation
	PWS
	pwspy.analysis.compilation.PWSCompilerSettings
	pwspy.analysis.compilation.PWSRoiCompilationResults
	pwspy.analysis.compilation.PWSRoiCompiler

	Dynamics
	pwspy.analysis.compilation.DynamicsCompilerSettings
	pwspy.analysis.compilation.DynamicsRoiCompilationResults
	pwspy.analysis.compilation.DynamicsRoiCompiler

	Generic
	pwspy.analysis.compilation.GenericCompilerSettings
	pwspy.analysis.compilation.GenericRoiCompilationResults
	pwspy.analysis.compilation.GenericRoiCompiler

	pwspy.analysis.pws
	Classes
	pwspy.analysis.pws.PWSAnalysisSettings
	pwspy.analysis.pws.PWSAnalysisResults
	pwspy.analysis.pws.PWSAnalysis

	Inheritance

	pwspy.analysis.warnings
	pwspy.analysis.dynamics
	Classes
	pwspy.analysis.dynamics.DynamicsAnalysisSettings
	pwspy.analysis.dynamics.DynamicsAnalysisResults
	pwspy.analysis.dynamics.DynamicsAnalysis

	Inheritance

	Inheritance

	pwspy.dataTypes
	Metadata Classes
	pwspy.dataTypes.PwsMetaData
	pwspy.dataTypes.DynMetaData
	pwspy.dataTypes.ERMetaData
	pwspy.dataTypes.FluorMetaData

	Data Classes
	pwspy.dataTypes.PwsCube
	pwspy.dataTypes.DynCube
	pwspy.dataTypes.KCube
	pwspy.dataTypes.ExtraReflectanceCube
	pwspy.dataTypes.ExtraReflectionCube
	pwspy.dataTypes.ICBase
	pwspy.dataTypes.ICRawBase

	Other Classes
	pwspy.dataTypes.Roi
	pwspy.dataTypes.RoiFile
	pwspy.dataTypes.CameraCorrection
	pwspy.dataTypes.Acquisition
	pwspy.dataTypes.FluorescenceImage

	Inheritance

	pwspy.utility
	Modules
	pwspy.utility.acquisition
	Functions
	pwspy.utility.acquisition.loadDirectory

	Classes
	pwspy.utility.acquisition.RuntimeSequenceSettings
	pwspy.utility.acquisition.SequenceAcquisition
	pwspy.utility.acquisition.SequencerCoordinate
	pwspy.utility.acquisition.SequencerCoordinateRange
	pwspy.utility.acquisition.SequencerStep
	pwspy.utility.acquisition.IterableSequencerStep
	pwspy.utility.acquisition.ZStackStep
	pwspy.utility.acquisition.TimeStep
	pwspy.utility.acquisition.PositionsStep
	pwspy.utility.acquisition.ContainerStep

	Inheritance

	pwspy.utility.DConversion
	Classes
	pwspy.utility.DConversion.S2DMatlabBridge

	pwspy.utility.fileIO
	Functions
	pwspy.utility.fileIO.loadAndProcess
	pwspy.utility.fileIO.processParallel

	pwspy.utility.fluorescence
	Functions
	pwspy.utility.fluorescence.updateFolderStructure

	pwspy.utility.machineVision
	Functions
	pwspy.utility.machineVision.to8bit
	pwspy.utility.machineVision.SIFTRegisterTransform
	pwspy.utility.machineVision.ORBRegisterTransform
	pwspy.utility.machineVision.edgeDetectRegisterTranslation

	pwspy.utility.micromanager
	Classes
	pwspy.utility.micromanager.Image
	pwspy.utility.micromanager.Position1d
	pwspy.utility.micromanager.Position2d
	pwspy.utility.micromanager.PositionList
	pwspy.utility.micromanager.Property
	pwspy.utility.micromanager.PropertyMap
	pwspy.utility.micromanager.MultiStagePosition

	pwspy.utility.misc
	Decorators
	pwspy.utility.misc.cached_property
	pwspy.utility.misc.profileDec

	pwspy.utility.plotting
	Functions
	pwspy.utility.plotting.roiColor

	pwspy.utility.reflection
	Subpackages
	pwspy.utility.reflection.extraReflectance
	Functions
	pwspy.utility.reflection.extraReflectance.getTheoreticalReflectances
	pwspy.utility.reflection.extraReflectance.generateMaterialCombos
	pwspy.utility.reflection.extraReflectance.getAllCubeCombos
	pwspy.utility.reflection.extraReflectance.plotExtraReflection
	pwspy.utility.reflection.extraReflectance.generateRExtraCubes
	Classes
	pwspy.utility.reflection.multilayerReflectanceEngine
	Classes
	pwspy.utility.reflection.multilayerReflectanceEngine.Polarization
	pwspy.utility.reflection.multilayerReflectanceEngine.Layer
	pwspy.utility.reflection.multilayerReflectanceEngine.Stack
	pwspy.utility.reflection.multilayerReflectanceEngine.NonPolarizedStack
	pwspy.utility.reflection.reflectanceHelper
	Functions
	pwspy.utility.reflection.reflectanceHelper.getReflectance
	pwspy.utility.reflection.reflectanceHelper.getRefractiveIndex

	Classes
	pwspy.utility.reflection.Material

	Examples
	Examples
	Performing FFT on the raw data to get a view of the estimated depth of cell features
	Brief example of basic PWS analysis to produce Sigma, Reflectance, Ld, and other images.
	Use the compilation functionality to reduce analysis results to a table of values of average values within an ROI
	Basic loading of ROI’s to extract data from specific regions
	Using a hand-drawn ROI to generate a reference pseudo-measurement
	Blurring data laterally to smooth a reference image.
	Measuring Sigma using only a limited range of the OPD signal.
	Generating new position lists to enable colocalized measurements on multiple systems.

	Indices and tables
	Python Module Index
	Index

